【題目】把兩個直角三角形如圖放置,使與重合,與相交于點,其中,,,,.
圖中線段的長________;________
如圖,把繞著點逆時針旋轉(zhuǎn)度得,與相交于點,若恰好是以為底邊的等腰三角形,求線段的長.
【答案】(1);;(2).
【解析】
(1)過點O作OM⊥DC于點M,作ON⊥CB于點N,進而得出AD的長,再利用銳角三角函數(shù)關(guān)系得出DO的長,再利用勾股定理得出AO的長;
(2)利用旋轉(zhuǎn)的性質(zhì)以及銳角三角函數(shù)關(guān)系得出tan∠BCE1=tanα=,再利用tan∠D1CA=tanα= ,即可得出FG的長,進而得出AF的長.
(1)過點O作OM⊥DC于點M,作ON⊥CB于點N,
∵∠BAC=45°,AB=6cm,
∴BC=AC=6cm,
∵CE=5cm,CD=10cm,
∴BE=1cm,AD=4cm,
設MO=xcm,
∴AM=xcm,
∴tanD= ,
解得:x=4,
∴DM=8cm,MO=4cm,
∴DO=4cm,
∵MO=AM=4cm,
∴AO=4 cm,
故答案為;;
作于點,
設旋轉(zhuǎn)角度為度,
即,
在中,,,
所以,
因為,,
所以,
所以,
所以,
∴,
解得:,
所以.
科目:初中數(shù)學 來源: 題型:
【題目】對于一元二次方程,下列說法:①若,則方程必有一根為;②若是方程的一個根,則一定有成立;③若,則方程一定有兩個不相等實數(shù)根;其中正確結(jié)論有( )個.
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,A(-2,2)、AB⊥x軸于點B,AD⊥y軸于點D,C(-2,1)為AB的中點,直線CD交x軸于點F.
(1)求直線CD的函數(shù)關(guān)系式;
(2)過點C作CE⊥DF且交x軸于點E,求證:∠ADC=∠EDC;
(3)求點E坐標;
(4)點P是直線CE上的一個動點,求PB+PF的最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一副直角三角尺疊放如圖1所示,現(xiàn)將45°的三角尺ADE固定不動,將含30的三角尺ABC繞頂點A順時針轉(zhuǎn)動,使兩塊三角尺至少有一組邊互相平行,如圖2,當∠BAD=15°時,BC∥DE,則∠BAD(0°<∠BAD<180°)其它所有可能符合條件的度數(shù)為( )
A.60°和135°B.45°、60°、105°、135°C.30°和45°D.以上都有可能
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知是等邊三角形,點的坐標是,點在第一象限,的平分線交軸于點,把繞著點按逆時針方向旋轉(zhuǎn),使邊與重合,得到,連接.求:的長及點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,已知∠ACB=90°,AB=10cm,AC=8cm,動點P從點A出發(fā),以2cm/s的速度沿線段AB向點B運動,在運動過程中,當△APC為等腰三角形時,點P出發(fā)的時間t可能的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,在等邊三角形ABC中,點E在AB上,點D在CB的延長線上,且ED=EC.
(1)(特殊情況,探索結(jié)論)
如圖1,當點E為AB的中點時,確定線段AE與DB的大小關(guān)系,請你直接寫出結(jié)論:
AE DB(填“>”、“<”或“=”).
(2)(特例啟發(fā),解答題目)
如圖2,當點E為AB邊上任意一點時,確定線段AE與DB的大小關(guān)系,請你直接寫出結(jié)論,AE DB(填“>”、“<”或“=”);理由如下,過點E作EF∥BC,交AC于點F.(請你將解答過程完整寫下來).
(3)(拓展結(jié)論,設計新題)
在等邊三角形ABC中,點E在直線AB上,點D在線段CB的延長線上,且ED=EC,若△ABC的邊長為1,AE=2,求CD的長.(請你畫出相應圖形,并直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c(a≠0)的頂點坐標為(2,﹣1),圖象與y軸交于點C(0,3),與x軸交于A、B兩點.
(1)求拋物線的解析式;
(2)設拋物線對稱軸與直線BC交于點D,連接AC、AD,求△ACD的面積;
(3)點E為直線BC上的任意一點,過點E作x軸的垂線與拋物線交于點F,問是否存在點E使△DEF為直角三角形?若存在,求出點E坐標,若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com