【題目】如圖1,過等邊三角形ABC邊AB上一點(diǎn)D作DE∥BC交邊AC于點(diǎn)E,分別取BC,DE的中點(diǎn)M,N,連接MN.
(1)發(fā)現(xiàn):在圖1中, =;
(2)應(yīng)用:如圖2,將△ADE繞點(diǎn)A旋轉(zhuǎn),請(qǐng)求出 的值;
(3)拓展:如圖3,△ABC和△ADE是等腰三角形,且∠BAC=∠DAE,M,N分別是底邊BC,DE的中點(diǎn),若BD⊥CE,請(qǐng)直接寫出 的值.
【答案】
(1)
(2)
解:如圖2中,連接AM、AN.
∵△ABC,△ADE都是等邊三角形,BM=MC,DN=NE,
∴AM⊥BC,AN⊥DE,
∴ =sin60°, =sin60°,
∴ = ,
∵∠MAB=∠DAN=30°,
∴∠BAD=∠MAN,
∴△BAD∽△MAN,
∴ = =sin60°=
(3)
解:如圖3中,連接AM、AN,延長(zhǎng)AD交CE于H,交AC于O.
∵AB=AC,AD=AE,BM=CM,DN=NE,
∴AM⊥BC,AN⊥DE,
∵∠BAC=∠DAE,
∴∠ABC=∠ADE,
∴sin∠ABM=sin∠ADN,
∴ = ,
∵∠BAM= BAC,∠DAN= ∠DAE,
∴∠BAM=∠DAN,
∴∠BAD=∠MAN.
∴△BAD∽△MAN,
∴ = =sin∠ABC,
∵∠BAC=∠DAE,
∴∠BAD=∠CAE,
∵AB=AC,AD=AE,
∴△BAD≌△CAE,
∴∠ABD=∠ACE,
∵BD⊥CE,
∴∠BHC=90°,
∴∠ACE+∠COH=90°,∵∠AOB=∠COH,
∴∠ABD+∠AOB=90°,
∴∠BAO=90°,
∵AB=AC,
∴∠ABC=45°,
∴ =sin45°=
【解析】解:(1)如圖1中,作DH⊥BC于H,連接AM.
∵AB=AC,BM=CM,
∴AM⊥BC,
∵△ADE時(shí)等邊三角形,
∴∠ADE=60°=∠B,
∴DE∥BC,
∵AM⊥BC,
∴AM⊥DE,
∴AM平分線段DE,
∵DN=NE,
∴A、N、M共線,
∴∠NMH=∠MND=∠DHM=90°,
∴四邊形MNDH時(shí)矩形,
∴MN=DH,
∴ = =sin60°= ,
故答案為 .
(1)如圖1中,作DH⊥BC于H,連接AM.只要證明四邊形MNDH時(shí)矩形,即可解決問題.(2)如圖2中,連接AM、AN.只要證明△BAD∽△MAN,利用相似比為 即可解決問題.(3)如圖3中,連接AM、AN,延長(zhǎng)AD交CE于H,交AC于O.由△BAD∽△MAN,推出 = =sin∠ABC,只要證明△ABC時(shí)等腰直角三角形即可解決問題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y1=kx+b(k≠0)和反比例函數(shù)y2= (m≠0)的圖象交于點(diǎn)A(﹣1,6),B(a,﹣2).
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)根據(jù)圖象直接寫出y1>y2時(shí),x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“五一”假期,成都某公司組織部分員工分別到甲、乙、丙、丁四地考察,公司按定額購(gòu)買了前往各地的車票,如圖是用來制作完整的車票種類和相應(yīng)數(shù)量的條形統(tǒng)計(jì)圖,根據(jù)統(tǒng)計(jì)圖回答下列問題:
若去丙地的車票占全部車票的,則總票數(shù)為______ 張,去丁地的車票有______ 張
若公司采用隨機(jī)抽取的方式發(fā)車票,小胡先從所有的車票中隨機(jī)抽取一張所有車票的形狀、大小、質(zhì)地完全相同、均勻,那么員工小胡抽到去甲地的車票的概率是多少?
若有一張車票,小王和小李都想要,他們決定采取擲一枚質(zhì)地均勻的正方體骰子的方式來確定給誰(shuí),其上的數(shù)字是3的倍數(shù),則給小王,否則給小李請(qǐng)問這個(gè)規(guī)則對(duì)雙方是否公平?若公平請(qǐng)說明理由;若不公平,請(qǐng)通過計(jì)算說明對(duì)誰(shuí)更有利.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】數(shù)學(xué)興趣小組想利用所學(xué)的知識(shí)了解某廣告牌的高度(圖中GH的長(zhǎng)),經(jīng)測(cè)量知CD=2m,在B處測(cè)得點(diǎn)D的仰角為60°,在A處測(cè)得點(diǎn)C的仰角為30°,AB=10m,且A、B、H三點(diǎn)共線,請(qǐng)根據(jù)以上數(shù)據(jù)計(jì)算GH的長(zhǎng)( ,要求結(jié)果精確得到0.1m)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,O為直線AB上一點(diǎn),OD平分∠AOC,∠DOE=90°.
(1)∠AOD的余角是 ______ ,∠COD的余角是 ______
(2)OE是∠BOC的平分線嗎?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法:①2a+b=0,②當(dāng)﹣1≤x≤3時(shí),y<0;③3a+c=0;④若(x1 , y1)(x2、y2)在函數(shù)圖象上,當(dāng)0<x1<x2時(shí),y1<y2 , 其中正確的是( )
A.①②④
B.①③
C.①②③
D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】畫圖并填空:如圖,方格紙中每個(gè)小正方形的邊長(zhǎng)都為1.在方格紙內(nèi)將△ABC經(jīng)過一次平移后得到△A′B′C′,圖中標(biāo)出了點(diǎn)D的對(duì)應(yīng)點(diǎn)D′.
(1)根據(jù)特征畫出平移后的△A′B′C′;
(2)利用網(wǎng)格的特征,畫出AC邊上的高BE并標(biāo)出畫法過程中的特征點(diǎn);
(3)△A′B′C′的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】兩個(gè)大小不同的等腰直角三角板如圖①放置,圖②是由它抽象出的幾何圖形,點(diǎn)B,C,E在同一條直線上,連接CD.求證:CD⊥BE.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com