【題目】如圖,在△ABC中,AB=BC,∠A=45°,以AB為直徑的⊙O交CO于點(diǎn)D.
(1)求證:BC是⊙O的切線;
(2)連接BD,若BD=m,tan∠CBD=n,寫出求直徑AB的思路.
【答案】見解析
【解析】分析:(1)欲證明BC是⊙O的切線,只需推知∠ABC=90°即可;
(2)①連接AD,利用圓周角定理和等角的余角相等推知∠BAD=∠CBD;②通過解直角Rt△ABD可求AD=;③在Rt△ABD中,由勾股定理可求AB的長.
詳解:(1)∵AB=BC,∠A=45°,
∴∠ACB=∠A=45°.
∴∠ABC=90°,
∴AB⊥BC,
∵AB是⊙O的直徑,
∴BC是⊙O的切線;
(2)求解思路如下:
①連接AD,
由AB為直徑可知,∠ADB=90°,進(jìn)而可知∠BAD=∠CBD;
②由BD=m,tan∠CBD=n,在Rt△ABD中,可求AD=;
③在Rt△ABD中,由勾股定理可求AB的長.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,分別表示小明步行與小剛騎車在同一路上行駛的路程S與時(shí)間t的關(guān)系.
(1)小剛出發(fā)時(shí)與小明相距________米.走了一段路后,自行車發(fā)生故障進(jìn)行修理,所用的時(shí)間是________分鐘.
(2)求出小明行走的路程S與時(shí)間t的函數(shù)關(guān)系式.(寫出計(jì)算過程)
(3)請通過計(jì)算說明:若小剛的自行車不發(fā)生故障,保持出發(fā)時(shí)的速度前進(jìn),何時(shí)與小明相遇?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩艘客輪同時(shí)離開港口,航行的速度都是40m/min,甲客輪用15min到達(dá)點(diǎn)A,乙客輪用20min到達(dá)點(diǎn)B,若A,B兩點(diǎn)的直線距離為1000m,甲客輪沿著北偏東30°的方向航行,則乙客輪的航行方向可能是( )
A. 北偏西30° B. 南偏西30° C. 南偏東60° D. 南偏西60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組為了了解本校男生參加課外體育鍛煉情況,隨機(jī)抽取本校300名男生進(jìn)行了問卷調(diào)查,統(tǒng)計(jì)整理并繪制了如下兩幅尚不完整的統(tǒng)計(jì)圖.
請根據(jù)以上信息解答下列問題:
(1)課外體育鍛煉情況扇形統(tǒng)計(jì)圖中,“經(jīng)常參加”所對應(yīng)的圓心角的度數(shù)為________;
(2)請補(bǔ)全條形統(tǒng)計(jì)圖;
(3)該校共有1200名男生,請估計(jì)全校男生中經(jīng)常參加課外體育鍛煉并且最喜歡的項(xiàng)目是籃球的人數(shù);
(4)小明認(rèn)為“全校所有男生中,課外最喜歡參加的運(yùn)動(dòng)項(xiàng)目是乒乓球的人數(shù)約為1200×=108”,請你判斷這種說法是否正確,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,∠B=90°,AB=BC=2,AD=1,CD=3.
(1)求∠DAB的度數(shù).
(2)求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c的對稱軸為直線x=1,該拋物線與x軸的兩個(gè)交點(diǎn)分別為A和B,與y軸的交點(diǎn)為C,其中A(﹣1,0).
(1)寫出B點(diǎn)的坐標(biāo)_____;
(2)若拋物線上存在一點(diǎn)P,使得△POC的面積是△BOC的面積的2倍,求點(diǎn)P的坐標(biāo);
(3)點(diǎn)M是線段BC上一點(diǎn),過點(diǎn)M作x軸的垂線交拋物線于點(diǎn)D,求線段MD長度的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在平面直角坐標(biāo)系中,點(diǎn)A、B、C的坐標(biāo)分別為(﹣1,3)、(﹣4,1)、(﹣2,1),將△ABC沿一確定方向平移得到△A1B1C1,點(diǎn)B的對應(yīng)點(diǎn)B1的坐標(biāo)是(1,2),則點(diǎn)A1,C1的坐標(biāo)分別是 ( 。
A. A1(4,4),C1(3,2) B. A1(3,3),C1(2,1) C. A1(4,3),C1(2,3) D. A1(3,4),C1(2,2)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)A(﹣3,0),點(diǎn)B(0,m),直線l:x=1.直線AB與直線l交于點(diǎn)C,連結(jié)OC.
(1)△OBC的面積與△OAC的面積比是否是定值?如果是,請求出面積比;如果不是,請說明理由.
(2)若m=2,點(diǎn)T在直線l上且TA=TB,求點(diǎn)T的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD中,∠ADB=60°,∠CDB=50°.
(1)若AD∥BC,AB∥CD,求∠ABC的度數(shù);
(2)若∠A=70°,請寫出圖中平行的線段,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com