【題目】如圖,在中,,,.的半徑為2,點P是線段AB上的一動點,過點P作的一條切線PQ,Q為切點.設(shè),,則與的函數(shù)圖象大致是()
A. AB. BC. CD. D
【答案】A
【解析】
根據(jù)PC∥BO,可得△ABO∽△APC,繼而可得,由AP=x,OA=4,OB=3,可得PC=,AC=,即OC=4-,由勾股定理可得OP2=(4-)2+()2=x2-x+16,繼而可得y=OP2-OQ2= x2-x+16,根據(jù)列出函數(shù)表達(dá)式,即可判斷.
解:如圖,作PC⊥OA,垂足為C,
∵PC∥BO,
∴△ABO∽△APC,
∴,
∵AP=x,OA=4,OB=3,
∴PC=,AC=,
∴OC=4-,
∴OP2=(4-)2+()2=x2-x+16,
∴y=OP2-OQ2= x2-x+16,
當(dāng)x=0時,y=12,
當(dāng)x=5時,y=5.
故選A.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,∠CAB=30°,AB=4.5cm.D是線段AB上的一個動點,連接CD,過點D作CD的垂線交CA于點E.設(shè)AD=xcm,CE=ycm.(當(dāng)點D與點A或點B重合時,y的值為5.2)
探究函數(shù)y隨自變量x的變化而變化的規(guī)律.
(1)通過取點、畫圖、測量,得到了x與y的幾組對應(yīng)值,如下表:
x/cm | 0 | 0.5 | 1 | 1.5 | 2 | 2.5 | 3 | 3.5 | 4 | 4.5 |
y/cm | 5.2 | 4.8 | 4.4 | 4.0 | 3.8 | 3.6 | 3.5 | 3.6 | 5.2 |
(要求:補全表格,相關(guān)數(shù)值保留一位小數(shù))
(2)建立平面直角坐標(biāo)系xOy,描出以補全后的表中各對對應(yīng)值為坐標(biāo)的點,畫出該函數(shù)的圖象;
(3)結(jié)合畫出的函數(shù)圖象,解決問題:當(dāng)CE=2AD時,AD的長度約為 cm(結(jié)果保留一位小數(shù)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】選用適當(dāng)?shù)姆椒ń庀铝蟹匠?/span>
(1)3x2-7x+2=0 (2)(x+1)(x-2)=x+1 (3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,⊙O的半徑為4,B是⊙O外一點,連接OB,且OB=6,過點B作⊙O的切線BD,切點為D,延長BO交⊙O于點A,過點A作切線BD的垂線,垂足為C.
(1)求證:AD平分∠BAC;
(2)求AC的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖分別是五角星、六角星、七角星、八角星的圖形;
(1)請問其中是中心對稱圖形的是哪些?
(2)依次類推,36角星是不是中心對稱圖形?
(3)怎樣判斷一個n角星是否是中心對稱圖形?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系內(nèi),小正方形網(wǎng)格的邊長為1個單位長度,△ABC的三個頂點的坐標(biāo)分別為A(﹣3,4),B(﹣5,2),C(﹣2,1).
(1)畫出△ABC關(guān)于y軸的對稱圖形△A1B1C1;
(2)畫出將△ABC繞原點O逆時針方向旋轉(zhuǎn)90°得到的△A2B2C2;
(3)求(2)中點C運動的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=﹣x2﹣2x+3.
(1)把函數(shù)關(guān)系式配成頂點式并求出圖象的頂點坐標(biāo)和對稱軸.
(2)若圖象與x軸交點為A.B,與y軸交點為C,求A、B、C三點的坐標(biāo);
(3)在圖中畫出圖象.并求出△ABC面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,己知O為坐標(biāo)原點,點,以點A為旋轉(zhuǎn)中心,把順時針旋轉(zhuǎn),得.
(Ⅰ)如圖①,當(dāng)旋轉(zhuǎn)后滿足軸時,求點C的坐標(biāo).
(Ⅱ)如圖②,當(dāng)旋轉(zhuǎn)后點C恰好落在x軸正半軸上時,求點D的坐標(biāo).
(Ⅲ)在(Ⅱ)的條件下,邊上的一點P旋轉(zhuǎn)后的對應(yīng)點為,當(dāng)取得最小值時,求點P的坐標(biāo)(直接寫出結(jié)果即可)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度數(shù);
(2)若OC=3,OA=5,求AB的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com