【題目】如圖,甲、乙兩人分別從A(1, ),B(6,0)兩點(diǎn)同時(shí)出發(fā),點(diǎn)O為坐標(biāo)原點(diǎn),甲沿AO方向,乙沿BO方向均以4km/h的速度行駛,th后,甲到達(dá)M點(diǎn),乙到達(dá)N點(diǎn).

(1)請(qǐng)說明甲、乙兩人到達(dá)O點(diǎn)前,MN與AB不可能平行;
(2)當(dāng)t為何值時(shí),△OMN∽△OBA;
(3)甲、乙兩人之間的距離為MN的長(zhǎng),設(shè)s=MN2 , 直接寫出s與t之間的函數(shù)關(guān)系式.

【答案】
(1)

解:∵A點(diǎn)的坐標(biāo)為(1, ),

∴OA= =2;

∵OM=2﹣4t,ON=6﹣4t,

∴當(dāng) = 時(shí),解得t=0,

∴甲、乙兩人到達(dá)O點(diǎn)前,只有當(dāng)t=0時(shí),△OMN∽△OAB,

∴MN與AB不可能平行.


(2)

解:∵甲到達(dá)O點(diǎn)的時(shí)間為t= ,乙到達(dá)O點(diǎn)的時(shí)間為t= = ,

∴甲先到達(dá)O點(diǎn),

∴t= 或t= 時(shí),O、M、N三點(diǎn)不能連接成三角形.

①t< 時(shí),

如果△OMN∽△OBA,則有 = ,

解得t=2> ,

∴△OMN不可能和△OBA相似.

②當(dāng) <t< 時(shí),

∠MON>∠AOB,

顯然△OMN不可能和△OBA相似.

③當(dāng)t> 時(shí),

=

解得t=2> ,

∴當(dāng)t=2時(shí),△OMN∽△OBA.


(3)

解:①當(dāng)t≤ 時(shí),如圖1,過點(diǎn)M作MH⊥x軸于點(diǎn)H,

,

在Rt△MOH中,

∵∠AOB=60°,

∴MH=OMsin60°=(2﹣4t)× = (1﹣2t),

∴OH=OMcos60°=(2﹣4t)× =1﹣2t,

∴NH=(6﹣4t)﹣(1﹣2t)=5﹣2t,

∴s=[ (1﹣2t)]2+(5﹣2t)2

=3(4t2﹣4t+1)+(4t2﹣20t+25)

=16t2﹣32t+28.

②當(dāng) <t≤ 時(shí),如圖2,作MH⊥x軸于點(diǎn)H,

,

在Rt△MOH中,

MH= (4t﹣2)= (2t﹣1),

NH= (4t﹣2)+(6﹣4t)=5﹣2t,

∴s=[ (1﹣2t)]2+(5﹣2t)2=16t2﹣32t+28.

③當(dāng)t> 時(shí),同理可得s=[ (1﹣2t)]2+(5﹣2t)2=16t2﹣32t+28.

綜上,可得s=[ (1﹣2t)]2+(5﹣2t)2=16t2﹣32t+28.


【解析】(1)判斷出甲、乙兩人到達(dá)O點(diǎn)前,只有當(dāng)t=0時(shí),△OMN∽△OAB,即可推得MN與AB不可能平行.(2)根據(jù)題意,分三種情況:①t< 時(shí);②當(dāng) <t< 時(shí);③當(dāng)t> 時(shí);求出當(dāng)t為何值時(shí),△OMN∽△OBA.(3)根據(jù)題意,分三種情況:①t≤ 時(shí);②當(dāng) <t≤ 時(shí);③當(dāng)t> 時(shí);寫出s與t之間的函數(shù)關(guān)系式即可.
【考點(diǎn)精析】關(guān)于本題考查的二次函數(shù)的圖象和二次函數(shù)的性質(zhì),需要了解二次函數(shù)圖像關(guān)鍵點(diǎn):1、開口方向2、對(duì)稱軸 3、頂點(diǎn) 4、與x軸交點(diǎn) 5、與y軸交點(diǎn);增減性:當(dāng)a>0時(shí),對(duì)稱軸左邊,y隨x增大而減小;對(duì)稱軸右邊,y隨x增大而增大;當(dāng)a<0時(shí),對(duì)稱軸左邊,y隨x增大而增大;對(duì)稱軸右邊,y隨x增大而減小才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解方程組
(1)解方程組:
(2)解不等式: <x.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)E是正方形ABCD的邊BC延長(zhǎng)線上的一點(diǎn),AC=CE,AE交CD于點(diǎn)F,則∠AFD的度數(shù)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,E是正方形ABCD中CD邊上一點(diǎn),以點(diǎn)A為中心把△ADE順時(shí)針旋轉(zhuǎn)90°.
(1)在圖中畫出旋轉(zhuǎn)后的圖形;
(2)若旋轉(zhuǎn)后E點(diǎn)的對(duì)應(yīng)點(diǎn)記為M,點(diǎn)F在BC上,且∠EAF=45°,連接EF. ①求證:△AMF≌△AEF;
②若正方形的邊長(zhǎng)為6,AE=3 ,求EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC中,AD⊥BC于D,AD=200,∠B=30°,∠C=45°.求BC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】我市重慶路水果市場(chǎng)某水果店購(gòu)進(jìn)甲、乙兩種水果.已知1千克甲種水果的進(jìn)價(jià)比1千克乙種水果的進(jìn)價(jià)多4元,購(gòu)進(jìn)2千克甲種水果與1千克乙種水果共需20元.
(1)求甲種水果的進(jìn)價(jià)為每千克多少元?
(2)經(jīng)市場(chǎng)調(diào)查發(fā)現(xiàn),甲種水果每天銷售量y(千克)與售價(jià)m(元/千克)之間滿足如圖所示的函數(shù)關(guān)系,求y與m之間的函數(shù)關(guān)系;

(3)在(2)的條件下,當(dāng)甲種水果的售價(jià)定為多少元時(shí),才能使每天銷售甲種水果的利潤(rùn)最大?最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,O為AB邊上一點(diǎn),⊙O交AB于E,F(xiàn)兩點(diǎn),BC切⊙O于點(diǎn)D,且CD= EF=1.
(1)求證:⊙O與AC相切;
(2)求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知二次函數(shù)y=ax2+bx+c(a≠0)圖象過點(diǎn)(﹣1,0),頂點(diǎn)為(1,2),則結(jié)論:
①abc>0;②x=1時(shí),函數(shù)最大值是2;③4a+2b+c>0;④2a+b=0;⑤2c<3b.
其中正確的結(jié)論有( )

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:(﹣ 2﹣(π﹣ 0﹣| ﹣2|+2sin60°.

查看答案和解析>>

同步練習(xí)冊(cè)答案