【題目】解方程組
(1)解方程組:
(2)解不等式: <x.

【答案】
(1)解: ,

①×3+②得9x+2x=3+8,

解得x=1,

把x=1代入①得3﹣y=1,

解得y=2,

所以方程組的解為


(2)解:去分母得2x﹣1<3x,

移項(xiàng)得2x﹣3x<1,

合并得﹣x<1,

系數(shù)化為1得x>﹣1.


【解析】(1)先利用加減消元法求出x,然后利用代入法求出y,從而得到方程組的解;(2)先去分母得到2x﹣1<3x,然后移項(xiàng)、合并,然后把x的系數(shù)化為1即可.
【考點(diǎn)精析】認(rèn)真審題,首先需要了解解二元一次方程組(二元一次方程組:①代入消元法;②加減消元法),還要掌握一元一次不等式的解法(步驟:①去分母;②去括號(hào);③移項(xiàng);④合并同類項(xiàng); ⑤系數(shù)化為1(特別要注意不等號(hào)方向改變的問題))的相關(guān)知識(shí)才是答題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,Rt△ABC中,∠ACB=90°,D是斜邊AB上的中點(diǎn),E是邊BC上的點(diǎn),AE與CD交于點(diǎn)F,且AC2=CECB.
(1)求證:AE⊥CD;
(2)連接BF,如果點(diǎn)E是BC中點(diǎn),求證:∠EBF=∠EAB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中xOy中,拋物線y=﹣x2+bx+c與x軸相交于點(diǎn)A(﹣1,0)和點(diǎn)B,與y軸相交于點(diǎn)C(0,3),拋物線的頂點(diǎn)為點(diǎn)D,聯(lián)結(jié)AC,BC,DB,DC.
(1)求這條拋物線的表達(dá)式及頂點(diǎn)D的坐標(biāo);
(2)求證:△ACO∽△DBC;
(3)如果點(diǎn)E在x軸上,且在點(diǎn)B的右側(cè),∠BCE=∠ACO,求點(diǎn)E的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校積極倡導(dǎo)學(xué)生展示自我,發(fā)展綜合素質(zhì),在新學(xué)期舉辦的校園文化藝術(shù)節(jié)中,學(xué)生可以在舞蹈、器樂、聲樂、小品、播音主持五個(gè)類別中挑選一項(xiàng)報(bào)名參加比賽,八年級(jí)學(xué)生小明從本年級(jí)學(xué)生各個(gè)類別的報(bào)名登記表中隨機(jī)抽取了一部分學(xué)生的報(bào)名情況進(jìn)行整理,并制作了如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)解答下列問題:
(1)小明隨機(jī)抽取了名學(xué)生的報(bào)名情況進(jìn)行整理,扇形統(tǒng)計(jì)圖中,表示E類別部分的扇形的圓心角度數(shù)為度;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)小華認(rèn)為如果知道八年級(jí)報(bào)名參加比賽的總?cè)藬?shù),則根據(jù)小明制作的統(tǒng)計(jì)圖就可以估算出八年級(jí)報(bào)名參加聲樂比賽的人數(shù).小明認(rèn)為如果知道初中三個(gè)年級(jí)報(bào)名參加比賽的總?cè)藬?shù),則根據(jù)自己制作的統(tǒng)計(jì)圖也可以估算出整個(gè)初中年級(jí)報(bào)名參見聲樂比賽的人數(shù).你認(rèn)為他倆的看法對(duì)嗎?并說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(4,0),B(3,3),以O(shè)A、AB為邊作OABC,則若一個(gè)反比例函數(shù)的圖象經(jīng)過C點(diǎn),則這個(gè)反比例函數(shù)的表達(dá)式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1、2是底面半徑為1cm,母線長為2cm的圓柱體和圓錐體模型.現(xiàn)要用長為2πcm,寬為4cm的長方形彩紙(如圖3)裝飾圓柱、圓錐模型表面.已知一個(gè)圓柱和一個(gè)圓錐模型為一套,長方形彩紙共有122張,用這些紙最多能裝飾多少套模型呢? 老師:“長方形紙可以怎么裁剪呢?”
學(xué)生甲:“可按圖4方式裁剪出2張長方形.”
學(xué)生乙:“可按圖5方式裁剪出6個(gè)小圓.”
學(xué)生丙:“可按圖6方式裁剪出1個(gè)大圓和2個(gè)小圓.”
老師:盡管還有其他裁剪方法,但為裁剪方便,我們就僅用這三位同學(xué)的裁剪方法!
(1)計(jì)算:圓柱的側(cè)面積是cm2 , 圓錐的側(cè)面積是cm2
(2)1張長方形彩紙剪拼后最多能裝飾個(gè)圓錐模型;5張長方形彩紙剪拼后最多能裝飾個(gè)圓柱體模型.
(3)求用122張彩紙對(duì)多能裝飾的圓錐、圓柱模型套數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的一條弦,OD⊥AB,垂足為點(diǎn)C,交⊙O于點(diǎn)D,點(diǎn)E在⊙O上.
(1)若∠AOD=52°,求∠DEB的度數(shù);
(2)若OC=3,OA=6,求tan∠DEB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(1,2)是反比例函數(shù)y= 圖象上的一點(diǎn),連接AO并延長交雙曲線的另一分支于點(diǎn)B,點(diǎn)P是x軸上一動(dòng)點(diǎn);若△PAB是等腰三角形,則點(diǎn)P的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙兩人分別從A(1, ),B(6,0)兩點(diǎn)同時(shí)出發(fā),點(diǎn)O為坐標(biāo)原點(diǎn),甲沿AO方向,乙沿BO方向均以4km/h的速度行駛,th后,甲到達(dá)M點(diǎn),乙到達(dá)N點(diǎn).

(1)請(qǐng)說明甲、乙兩人到達(dá)O點(diǎn)前,MN與AB不可能平行;
(2)當(dāng)t為何值時(shí),△OMN∽△OBA;
(3)甲、乙兩人之間的距離為MN的長,設(shè)s=MN2 , 直接寫出s與t之間的函數(shù)關(guān)系式.

查看答案和解析>>

同步練習(xí)冊(cè)答案