【題目】對于平面直角坐標系xOy中的任意兩點M,N,給出如下定義:點M與點N的“折線距離”為:.
例如:若點M(-1,1),點N(2,-2),則點M與點N的“折線距離”為:.根據(jù)以上定義,解決下列問題:
(1)已知點P(3,-2).
①若點A(-2,-1),則d(P,A)= ;
②若點B(b,2),且d(P,B)=5,則b= ;
③已知點C(m,n)是直線上的一個動點,且d(P,C)<3,求m的取值范圍.
(2)⊙F的半徑為1,圓心F的坐標為(0,t),若⊙F上存在點E,使d(E,O)=2,直接寫出t的取值范圍.
【答案】(1)① 6,② 2或4,③ 1<m<4;(2)或.
【解析】
(1)①根據(jù)“折線距離”的定義直接列式計算;
②根據(jù)“折線距離”的定義列出方程,求解即可;
③根據(jù)“折線距離”的定義列出式子,可知其幾何意義是數(shù)軸上表示數(shù)m的點到表示數(shù)3的點的距離與到表示數(shù)2的點的距離之和小于3.
(2)由題意可知,根據(jù)圖像易得t的取值范圍.
解:(1) ①
②
∴
∴ b=2或4
③ ,
即數(shù)軸上表示數(shù)m的點到表示數(shù)3的點的距離與到表示數(shù)2的點的距離之和小于3,所以1<m<4
(2)設E(x,y),則,
如圖,若點E在⊙F上,則.
科目:初中數(shù)學 來源: 題型:
【題目】近幾年購物的支付方式日益增多,某數(shù)學興趣小組就此進行了抽樣調(diào)查.調(diào)查結(jié)果顯示,支付方式有:A微信、B支付寶、C現(xiàn)金、D其他,該小組對某超市一天內(nèi)購買者的支付方式進行調(diào)查統(tǒng)計,得到如下兩幅不完整的統(tǒng)計圖.
請你根據(jù)統(tǒng)計圖提供的信息,解答下列問題:
(1)本次一共調(diào)查了多少名購買者?
(2)請補全條形統(tǒng)計圖;在扇形統(tǒng)計圖中A種支付方式所對應的圓心角為 度.
(3)若該超市這一周內(nèi)有1600名購買者,請你估計使用A和B兩種支付方式的購買者共有多少名?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的一邊AB在x軸上,∠ABC=90°,點C(4,8)在第一象限內(nèi),AC與y軸交于點E,拋物線經(jīng)過A、B兩點,與y軸交于點D(0,﹣6).
(1)請直接寫出拋物線的表達式;
(2)點P是x軸下方拋物線上一動點,設點P的橫坐標為m,△PAC的面積為S,試求出S與m的函數(shù)關系式;
(3)若點M是x軸正半軸上一點(不與點A重合),拋物線上是否存在點N,使∠CAN=∠MAN.若存在,請直接寫出點N的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知拋物線y=ax2+bx+2經(jīng)過A(﹣1,0),B(2,0),C三點.直線y=mx+交拋物線于A,Q兩點,點P是拋物線上直線AQ上方的一個動點,作PF⊥x軸,垂足為F,交AQ于點N.
(1)求拋物線的解析式;
(2)如圖①,當點P運動到什么位置時,線段PN=2NF,求出此時點P的坐標;
(3)如圖②,線段AC的垂直平分線交x軸于點E,垂足為D,點M為拋物線的頂點,在直線DE上是否存在一點G,使△CMG的周長最小?若存在,請求出點G的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AD∥BC,∠A=90°,BD=BC,CE⊥BD于E.
(1)求證:BE=AD;(2)若∠DCE=15°,AB=2,求在四邊形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線AB與x軸,y軸分別交于點A(2,0),點B(0,2),動點D以1個單位長度/秒的速度從點A出發(fā)向x軸負半軸運動,同時動點E以個單位長度/秒的速度從點B出發(fā)向y軸負半軸運動,設運動時間為t秒,以點A為頂點的拋物線經(jīng)過點E,過點E作x軸的平行線,與拋物線的另一個交點為點G,與AB相交于點F
(1)求∠OAB度數(shù);
(2)當t為何值時,四邊形ADEF為菱形,請求出此時二次函數(shù)解析式;
(3)是否存在實數(shù)t,使△AGF為直角三角形?若存在,求t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一位小朋友在粗糙不打滑的“Z”字形平面軌道上滾動一個半徑為10cm的圓盤,如圖所示,AB與CD是水平的,BC與水平面的夾角為60°,其中AB=60cm,CD=40cm,BC=40cm,那么該小朋友將圓盤從A點滾動到D點其圓心所經(jīng)過的路線長為___________cm
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,反比例函數(shù)y= (x>0)的圖象與邊長是6的正方形OABC的兩邊AB,BC分別相交于M,N 兩點,△OMN的面積為10.若動點P在x軸上,則PM+PN的最小值是( )
A. 6 B. 10 C. 2 D. 2
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AB=6,BC=12,點E在邊BC上,且BE=2CE,將矩形沿過點E的直線折疊,點C,D的對應點分別為C′,D′,折痕與邊AD交于點F,當點B,C′,D′恰好在同一直線上時,AF的長為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com