【題目】一位小朋友在粗糙不打滑的“Z”字形平面軌道上滾動一個半徑為10cm的圓盤,如圖所示,AB與CD是水平的,BC與水平面的夾角為60°,其中AB=60cm,CD=40cm,BC=40cm,那么該小朋友將圓盤從A點滾動到D點其圓心所經(jīng)過的路線長為___________cm
【答案】
【解析】試題解析:如下圖,畫出圓盤滾動過程中圓心移動路線的分解圖象.
可以得出圓盤滾動過程中圓心走過的路線由線段OO1,線段O1O2,圓弧,線段O3O4四部分構(gòu)成.
其中O1E⊥AB,O1F⊥BC,O2C⊥BC,O3C⊥CD,O4D⊥CD.
∵BC與AB延長線的夾角為60°,O1是圓盤在AB上滾動到與BC相切時的圓心位置,
∴此時⊙O1與AB和BC都相切.
則∠O1BE=∠O1BF=60度.
此時Rt△O1BE和Rt△O1BF全等,
在Rt△O1BE中,BE=cm.
∴OO1=AB-BE=(60-)cm.
∵BF=BE=cm,
∴O1O2=BC-BF=(40-)cm.
∵AB∥CD,BC與水平夾角為60°,
∴∠BCD=120度.
又∵∠O2CB=∠O3CD=90°,
∴∠O2CO3=60度.
則圓盤在C點處滾動,其圓心所經(jīng)過的路線為圓心角為60°且半徑為10cm的圓弧.
∴的長=×2π×10=πcm.
∵四邊形O3O4DC是矩形,
∴O3O4=CD=40cm.
綜上所述,圓盤從A點滾動到D點,其圓心經(jīng)過的路線長度是:
(60-)+(40-)+π+40=(140-+π)cm.
科目:初中數(shù)學 來源: 題型:
【題目】(2017浙江省湖州市)如圖,已知∠AOB=30°,在射線OA上取點O1,以O1為圓心的圓與OB相切;在射線O1A上取點O2,以O2為圓心,O2O1為半徑的圓與OB相切;在射線O2A上取點O3,以O3為圓心,O3O2為半徑的圓與OB相切;…;在射線O9A上取點O10,以O10為圓心,O10O9為半徑的圓與OB相切.若⊙O1的半徑為1,則⊙O10的半徑長是______.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】高高的路燈掛在路邊的上方,高傲而明亮,小明拿著一根2米長的竹竿,想量一量路燈的高度,直接量是不可能的.于是,他走到路燈旁的一個地方,豎起竹竿(即AE),這時,他量了一下竹竿的影長(AC)正好是1米,他沿著影子的方向走,向遠處走出兩根竹竿的長度(即AB=4米),他又豎起竹竿,這時竹竿的影長正好是一根竹竿的長度(即BD=2米).此時,小明抬頭瞧瞧路燈,若有所思地說:“噢,我知道路燈有多高了!”同學們,請你和小明一起解答這個問題:
(1)在圖中作出路燈O的位置,并作OP⊥l于P.
(2)求出路燈O的高度,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點A是雙曲線y=﹣在第二象限分支上的一個動點,連接AO并延長交另一分支于點B,以AB為底作等腰△ABC,且∠ACB=120°,點C在第一象限,隨著點A的運動,點C的位置也不斷變化,但點C始終在雙曲線y=上運動,則k的值為_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知反比例函數(shù)(k為常數(shù),k≠1).
(Ⅰ)其圖象與正比例函數(shù)y=x的圖象的一個交點為P,若點P的縱坐標是2,求k的值;
(Ⅱ)若在其圖象的每一支上,y隨x的增大而減小,求k的取值范圍;
(Ⅲ)若其圖象的一支位于第二象限,在這一支上任取兩點A(x1,y1)、B(x2,y2),當y1>y2時,試比較x1與x2的大。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在梯形ABCD中,AD∥BC,∠B=90°,∠C=45°,AD=1,BC=4,E為AB中點,EF∥DC交BC于點F,求EF的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】平面直角坐標系中,點P的坐標為(m,n),則向量可以用點P的坐標表示為=(m,n);已知=(x1,y1),=(x2,y2),若x1x2+y1y2=0,則與互相垂直.
下面四組向量:①=(3,﹣9),=(1,﹣);
②=(2,π0),=(2﹣1,﹣1);
③=(cos30°,tan45°),=(sin30°,tan45°);
④=(+2,),=(﹣2,).
其中互相垂直的組有( 。
A. 1組 B. 2組 C. 3組 D. 4組
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在矩形ABCD中,AD>AB,點P是CD邊上的任意一點(不含C,D兩端點),過點P作PF∥BC,交對角線BD于點F.
(1)如圖1,將△PDF沿對角線BD翻折得到△QDF,QF交AD于點E.求證:△DEF是等腰三角形;
(2)如圖2,將△PDF繞點D逆時針方向旋轉(zhuǎn)得到△P'DF',連接P'C,F(xiàn)'B.設(shè)旋轉(zhuǎn)角為α(0°<α<180°).
①若0°<α<∠BDC,即DF'在∠BDC的內(nèi)部時,求證:△DP'C∽△DF'B.
②如圖3,若點P是CD的中點,△DF'B能否為直角三角形?如果能,試求出此時tan∠DBF'的值,如果不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=x2+bx+c的圖象經(jīng)過點(4,3),(3,0).
(1)求b、c的值;
(2)求出該二次函數(shù)圖象的頂點坐標和對稱軸,并在所給坐標系中畫出該函數(shù)的圖象;
(3)該函數(shù)的圖象經(jīng)過怎樣的平移得到y=x2的圖象?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com