【題目】2018121日,貴陽地鐵號線正式開通,標志著貴陽中心城區(qū)正式步入地鐵時代,為市民的出行帶來了便捷,如圖是貴陽地鐵一號線路圖(部分),菁菁與琪琪隨機從這幾個站購票出發(fā).

1)菁菁正好選擇沙沖路站出發(fā)的概率為

2)用列表或畫樹狀圖的方法,求菁菁與琪琪出發(fā)的站恰好相鄰的概率.

【答案】1;(2

【解析】

1)根據(jù)概率公式,即可求解;

2)記火車站為A,沙沖路為B,望城坡為C,新村為D,然后采用列表法列出所有可能的情況,找出滿足條件的情況,即可得出其概率.

1P(選擇沙沖路站出發(fā))=

2)記火車站為A,沙沖路為B,望城坡為C,新村為D

列表如下:

由圖可知共有16種等可能情況,滿足條件的情況是6

P(菁菁與琪琪出發(fā)的站恰好相鄰)=

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算:

1)解方程:①(2x3225

x

2)先化簡,再求值:(1÷,其中x滿足x2xl0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分10分)科幻小說《實驗室的故事》中,有這樣一個情節(jié),科學(xué)家把一種珍奇的植物分別放在不同溫度的環(huán)境中,經(jīng)過一天后,測試出這種植物高度的增長情況(如下表):

溫度/℃

……

4

2

0

2

4

4.5

……

植物每天高度增長量/mm

……

41

49

49

41

25

19.75

……

由這些數(shù)據(jù),科學(xué)家推測出植物每天高度增長量是溫度的函數(shù),且這種函數(shù)是反比例函數(shù)、一次函數(shù)和二次函數(shù)中的一種.

1)請你選擇一種適當(dāng)?shù)暮瘮?shù),求出它的函數(shù)關(guān)系式,并簡要說明不選擇另外兩種函數(shù)的理由;

2)溫度為多少時,這種植物每天高度的增長量最大?

3)如果實驗室溫度保持不變,在10天內(nèi)要使該植物高度增長量的總和超過250mm,那么實驗室的溫度應(yīng)該在哪個范圍內(nèi)選擇?請直接寫出結(jié)果.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016·荊門中考)如圖,天星山山腳下西端A處與東端B處相距800(1)米,小軍和小明同時分別從A處和B處向山頂C勻速行走.已知山的西端的坡角是45°,東端的坡角是30°,小軍的行走速度為/秒.若小明與小軍同時到達山頂C處,則小明的行走速度是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線yx2+mx+mm0)的頂點為A,交y軸于點C

1)求出點A的坐標(用含m的式子表示);

2)若直線y=﹣xn經(jīng)過點A,與拋物線交于另一點B,證明:AB的長是定值;

3)連接AC,延長ACx軸于點D,作直線AD關(guān)于x軸對稱的直線,與拋物線分別交于E、F兩點.若∠ECF90°,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商貿(mào)公司以每千克元的價格購進一種干果,計劃以每千克元的價格銷售,為了讓顧客得到更大的實惠,現(xiàn)決定降價銷售,已知這種干果銷售量(千克)與每千克降價()之間滿足一次函數(shù)關(guān)系,其圖象如圖所示: .

1)求之間的函數(shù)關(guān)系式;

2)函數(shù)圖象中點表示的實際意義是 ;

3)該商貿(mào)公司要想獲利元,則這種干果每千克應(yīng)降價多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】國家教育部提出每天鍛煉一小時,健康工作五十年,幸福生活一輩子”.萬州區(qū)某中學(xué)對九年級部分學(xué)生進行問卷調(diào)查你最喜歡的鍛煉項目是什么?,規(guī)定從打球,跑步,游泳,跳繩其他五個選項中選擇自己最喜歡的項目,且只能選擇一個項目,并將調(diào)查結(jié)果繪制成如下兩幅不完整的統(tǒng)計圖.

最喜歡的鍛煉項目

人數(shù)

打球

120

跑步

游泳

跳繩

30

其他

1)這次問卷調(diào)查的學(xué)生總?cè)藬?shù)為 ,人數(shù) ;

2)扇形統(tǒng)計圖中, ,其他對應(yīng)的扇形的圓心角的度數(shù)為 度;

3)若該年級有1200名學(xué)生,估計喜歡跳繩項目的學(xué)生大約有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(理論學(xué)習(xí))學(xué)習(xí)圖形變換中的軸對稱知識后,我們?nèi)菀自谥本上找到點,使的值最小,如圖所示,根據(jù)這一理論知識解決下列問題:

1)(實踐運用)如圖,已知的直徑,弧所對圓心角的度數(shù)為,點是弧的中點,請你在直徑上找一點,使的值最小,并求的最小值.

2)(拓展延伸)在圖中的四邊形的對角線上找一點,使.(尺規(guī)作圖,保留作圖痕跡,不必寫出作法).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019年下半年豬肉大漲,某養(yǎng)豬專業(yè)戶想擴大養(yǎng)豬場地,但為了節(jié)省材料,利用一面墻(墻足夠長)為一邊,用總長為120的材料圍成了如圖所示①②③三塊矩形區(qū)域,而且這三塊矩形區(qū)域的面積相等,設(shè)的長度為),矩形區(qū)域的面積.

1)求之間的函數(shù)表達式,并注明自變量的取值范圍.

2)當(dāng)為何值時,有最大值?最大值是多少?

查看答案和解析>>

同步練習(xí)冊答案