9、點P(a,b)中,若ab>0,則點P在第
一,三
象限.
分析:先根據(jù)ab>0得出a,b同號,再分類討論其同號或異號的情況即可.
解答:解:∵ab>0,∴a,b同號,
當(dāng)a>0,b>0時,點在第一象限;
當(dāng)a<0,b<0時,點在第三象限.
故點P在第一或三象限.
點評:解決本題的關(guān)鍵是掌握好四個象限的點的坐標的特征:第一象限正正,第二象限負正,第三象限負負,第四象限正負.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

(2013•玄武區(qū)二模)如圖,在Rt△ABC中,∠C=90°,AC=6,BC=8.動點P從點A開始沿折線AC-CB-BA運動,點P在AC,CB,BA邊上運動,速度分別為每秒3,4,5個單位.直線l從與AC重合的位置開始,以每秒
43
個單位的速度沿CB方向平行移動,即移動過程中保持l∥AC,且分別與CB,AB邊交于E,F(xiàn)兩點,點P與直線l同時出發(fā),設(shè)運動的時間為t秒,當(dāng)點P第一次回到點A時,點P和直線l同時停止運動.
(1)當(dāng)t=5秒時,點P走過的路徑長為
19
19
;當(dāng)t=
3
3
秒時,點P與點E重合;
(2)當(dāng)點P在AC邊上運動時,將△PEF繞點E逆時針旋轉(zhuǎn),使得點P的對應(yīng)點M落在EF上,點F的對應(yīng)點記為點N,當(dāng)EN⊥AB時,求t的值;
(3)當(dāng)點P在折線AC-CB-BA上運動時,作點P關(guān)于直線EF的對稱點,記為點Q.在點P與直線l運動的過程中,若形成的四邊形PEQF為菱形,請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•長寧區(qū)二模)如圖,在直角坐標平面中,O為原點,A(0,6),B(8,0).點P從點A出發(fā),以每秒2個單位長度的速度沿射線AO方向運動,點Q從點B出發(fā),以每秒1個單位長度的速度沿x軸正方向運動.
P、Q兩動點同時出發(fā),設(shè)移動時間為t(t>0)秒.
(1)在點P、Q的運動過程中,若△POQ與△AOB相似,求t的值;
(2)如圖(2),當(dāng)直線PQ與線段AB交于點M,且
BM
MA
=
1
5
時,求直線PQ的解析式;
(3)以點O為圓心,OP長為半徑畫⊙O,以點B為圓心,BQ長為半徑畫⊙B,討論⊙O和⊙B的位置關(guān)系,并直接寫出相應(yīng)t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如下4個圖中,不同的矩形ABCD,若把D點沿AE對折,使D點與BC上的F點重合;
(1)圖①中,若DE:EC=2:1,求證:△ABF∽△AFE∽△FCE;并計算BF:FC.
(2)圖②中若DE:EC=3:1,計算BF:FC=
1:2
1:2
;圖③中若DE:EC=4:1,計算BF:FC=
1:3
1:3

(3)圖④中若DE:EC=n:1,猜想BF:FC=
1:(n-1)
1:(n-1)
;并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012年江蘇省無錫市江陰市初級中學(xué)中考數(shù)學(xué)模擬試卷(解析版) 題型:解答題

如圖,在直角坐標平面中,O為原點,A(0,6),B(8,0).點P從點A出發(fā),以每秒2個單位長度的速度沿射線AO方向運動,點Q從點B出發(fā),以每秒1個單位長度的速度沿x軸正方向運動.
P、Q兩動點同時出發(fā),設(shè)移動時間為t(t>0)秒.
(1)在點P、Q的運動過程中,若△POQ與△AOB相似,求t的值;
(2)如圖(2),當(dāng)直線PQ與線段AB交于點M,且時,求直線PQ的解析式;
(3)以點O為圓心,OP長為半徑畫⊙O,以點B為圓心,BQ長為半徑畫⊙B,討論⊙O和⊙B的位置關(guān)系,并直接寫出相應(yīng)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案