教育局為了了解本地區(qū)八年級(jí)學(xué)生數(shù)學(xué)基本功情況,從兩個(gè)不同的學(xué)校分別抽取一部分學(xué)生進(jìn)行數(shù)學(xué)基本功比賽.其中A校40人,平均成績(jī)?yōu)?5分;B校50人,平均成績(jī)?yōu)?5分.

(1)小李認(rèn)為這兩個(gè)學(xué)校的平均成績(jī)?yōu)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/30R0/0451/0002/3065318027964d30b5a43bc1a5cd1c5e/A/Image1.gif" width=16 HEIGHT=41>×(85+95)=90(分).他的想法對(duì)嗎?若不對(duì)請(qǐng)寫(xiě)出你認(rèn)為正確的答案.

(2)其他條件不變,當(dāng)A校抽查的人數(shù)為多少人時(shí),所抽查兩校學(xué)生的平均成績(jī)才是90分?

(3)根據(jù)上面數(shù)據(jù):a1,a2,…,am;b1,b2,…,bn;c1,c2,…,cp;d1,d2,…,dq.每一組數(shù)據(jù)的平均數(shù)分別為a、b、c、d.將這四組數(shù)據(jù)合并為一組數(shù)據(jù):a1,a2,…,am,b1,b2,…,bn,c1,c2,…,cp,d1,d2,…,dq

問(wèn)當(dāng)m、n、p、q滿足什么條件時(shí),它的平均數(shù)為(a+b+c+d)?并說(shuō)明理由.

答案:
解析:

  (1)小李的想法不對(duì).正確的答案為:

  平均成績(jī)=90.6(分)

  (2)設(shè)A校抽查人數(shù)為x人,由題意可得方程:95×50+85x=90(50+x),解得x=50.

  所以當(dāng)A校所抽查的人數(shù)也是50人時(shí),兩個(gè)學(xué)校的平均成績(jī)才是90分.

  (3)當(dāng)四組數(shù)據(jù)的個(gè)數(shù)相等時(shí),即m=n=p=q時(shí),a1,a2,…,am,b1,b2,…,bn,c1,c2,…,cp,d1,d2,…,dq的平均數(shù)為(a+b+c+d).

  理由如下:平均數(shù)=(a+b+c+d).


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:北師大版(2012) 八年級(jí)下 題型:

如圖繞虛線旋轉(zhuǎn)得到的幾何體是

[  ]

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:浙教版(2014) 八年級(jí)下 題型:

已知一元二次方程ax2+bx+c=0,當(dāng)a-b+c=0時(shí),那么x的值一定是

[  ]

A.

-1

B.

C.

1

D.

均不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:浙教版(2014) 八年級(jí)下 題型:

用配方法解方程x2-2x-5=0時(shí),原方程應(yīng)變形為

[  ]

A.

(x-2)2=9

B.

(x+2)2=9

C.

(x+1)2=6

D.

(x-1)2=6

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:蘇科版(2014) 八年級(jí)下 題型:

將矩形紙片ABCD按如圖所示的方式折疊,得到菱形AECF.若AB=3,則BC的長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:人教版(新課標(biāo)) 九年級(jí)(下) 題型:

畫(huà)出這個(gè)幾何體的三視圖

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:計(jì)算題

已知關(guān)于的一元二次方程有兩個(gè)實(shí)數(shù)根
(1)求實(shí)數(shù)的取值范圍;
(2)當(dāng)時(shí),求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖所示,將長(zhǎng)方形ABCD沿直線BD折疊,使C點(diǎn)落在C′處,BC′交AD于E.
(1)求證:BE=DE;
(2)若AD=8,AB=4,求△BED的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,點(diǎn)O是菱形ABCD對(duì)角線的交點(diǎn),DE∥AC,CE∥BD,連接OE.
求證:OE=BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案