【題目】已知:如圖,在平面直角坐標系xOy中,直線y= x+6與x軸、y軸的交點分別為A、B兩點,將∠OBA對折,使點O的對應點H落在直線AB上,折痕交x軸于點C.

(1)直接寫出點C的坐標,并求過A、B、C三點的拋物線的解析式;
(2)若(1)中拋物線的頂點為D,在直線BC上是否存在點P,使得四邊形ODAP為平行四邊形?若存在,求出點P的坐標;若不存在,說明理由;
(3)若把(1)中的拋物線向左平移3.5個單位,則圖象與x軸交于F、N(點F在點N的左側)兩點,交y軸于E點,則在此拋物線的對稱軸上是否存在一點Q,使點Q到E、N兩點的距離之差最大?若存在,請求出點Q的坐標;若不存在,請說明理由.

【答案】
(1)

解:連接CH,

由軸對稱得CH⊥AB,BH=BO,CH=CO

∴在△CHA中由勾股定理,得

AC2=CH2+AH2

∵直線y= x+6與x軸、y軸的交點分別為A、B兩點,

∴當x=0時,y=6,當y=0時,x=8

∴B(0,6),A(8,0)

∴OB=6,OA=8,

在Rt△AOB中,由勾股定理,得

AB=10

設C(a,0),∴OC=a

∴CH=a,AH=4,AC=8﹣a,在Rt△AHC中,

由勾股定理,得

(8﹣a)2=a2+42解得

a=3

C(3,0)

設拋物線的解析式為:y=ax2+bx+c,由題意,得

解得:

∴拋物線的解析式為:y= x2 +6,

∴y=


(2)

解:由(1)的結論,得

D( ,﹣

∴DF= ,

設BC的解析式為:y=kx+b,則有

解得:

直線BC的解析式為:y=﹣2x+6

設存在點P使四邊形ODAP是平行四邊形,P(m,n)

作PE⊥OA于E,HD交OA于F.

∴∠PEO=∠AFD=90°,PO=DA,PO∥DA

∴∠POE=∠DAF

∴△OPE≌△ADF

∴PE=DF=n= ,

=﹣2x+6

P( ,

當x= 時,

y=﹣2× +6=1≠

∴點P不再直線BC上,即直線BC上不存在滿足條件的點P


(3)

解:由題意得,平移后的解析式為:

y= (x﹣2)2

∴對稱軸為:x=2,

當x=0時,y=﹣

當y=0時,0= (x﹣2)2

解得:x1= ;x2=

∵F在N的左邊

F( ,0),E(0,﹣ ),N( ,0)

連接EF交x=2于Q,設EF的解析式為:y=kx+b,則有

解得:

∴EF的解析式為:y=﹣ x﹣

解得:

∴Q(2,﹣ ).


【解析】(1)根據(jù)軸對稱和角平分線的性質以及勾股定理可以求出OC的長度,從而求出點C的坐標.再根據(jù)直線的解析式求出A、B的坐標,最后利用待定系數(shù)法就可以求出拋物線的解析式.(2)根據(jù)(1)的解析式可以轉化為頂點式而求出頂點坐標D,利用B、C的坐標求出BC的解析式,假設在直線BC上存在滿足條件的點P,利用平行四邊形的性質和三角形全等的性質求出點P的坐標,得到點P不在直線BC上,而得出結論.(3)平移后根據(jù)(1)的解析式可以得到平移后的解析式,頂點坐標及對稱軸,可以求出與坐標軸的交點F、N、E的坐標,連接EF,根據(jù)E、F的坐標求出其解析式,求出EF與對稱軸的交點,就是Q點.
【考點精析】本題主要考查了二次函數(shù)的圖象和二次函數(shù)的性質的相關知識點,需要掌握二次函數(shù)圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減。粚ΨQ軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一艘海輪位于燈塔P的北偏東64°方向,距離燈塔120海里的A處,它沿正南方向航行一段時間后,到達位于燈塔P的南偏東45°方向上的B處,求BP和BA的長(結果取整數(shù)).
參考數(shù)據(jù):sin64°≈0.90,cos64°≈0.44,tan64°≈2.05, 取1.414.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠ACB=90°,點D是邊AB的中點,點E在邊BC上,AE=BE,點M是AE的中點,聯(lián)結CM,點G在線段CM上,作∠GDN=∠AEB交邊BC于N.
(1)如圖2,當點G和點M重合時,求證:四邊形DMEN是菱形;
(2)如圖1,當點G和點M、C不重合時,求證:DG=DN.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在直角坐標系中,⊙M經(jīng)過原點O(0,0),點A( ,0)與點B(0,﹣ ),點D在劣弧 上,連接BD交x軸于點C,且∠COD=∠CBO.
(1)求⊙M的半徑;
(2)求證:BD平分∠ABO;
(3)在線段BD的延長線上找一點E,使得直線AE恰好為⊙M的切線,求此時點E的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,等腰直角三角形OAB的一條直角邊在y軸上,點P是邊AB上的一個動點,過點P的反比例函數(shù)y= 的圖象交斜邊OB于點Q,
(1)當Q為OB中點時,AP:PB=
(2)若P為AB的三等分點,當△AOQ的面積為 時,k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點A(﹣2,1),B(1,4),若反比例函數(shù)y= 與線段AB有公共點時,k的取值范圍是(
A.﹣2≤k≤4
B.k≤﹣2或k≥4
C.﹣2≤k<0或k≥4
D.﹣2≤k<0或0<k≤4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖AB是⊙O的直徑,∠A=30°,延長OB到D使BD=OB.
(1)△OBC是否是等邊三角形?說明理由;
(2)求證:DC是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在正方形ABCD中,對角線AC、BD交于點O,動點P在線段BC上(不含點B),∠BPE= ∠ACB,PE交BO于點E,過點B作BF⊥PE,垂足為F,交AC于點G.

(1)當點P與點C重合時(如圖①),求證:△BOG≌△POE;
(2)通過觀察、測量、猜想: = ,并結合圖②證明你的猜想;
(3)把正方形ABCD改為菱形,其他條件不變(如圖③),若∠ACB=α,求 的值.(用含α的式子表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形OABC中,OA=3,OC=2,F(xiàn)是AB上的一個動點(F不與A,B重合),過點F的反比例函數(shù)(k>0)的圖象與BC邊交于點E.

(1)當F為AB的中點時,求該函數(shù)的解析式;
(2)當k為何值時,△EFA的面積最大,最大面積是多少?

查看答案和解析>>

同步練習冊答案