【題目】如圖,等腰直角三角形OAB的一條直角邊在y軸上,點(diǎn)P是邊AB上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P的反比例函數(shù)y= 的圖象交斜邊OB于點(diǎn)Q,
(1)當(dāng)Q為OB中點(diǎn)時(shí),AP:PB=
(2)若P為AB的三等分點(diǎn),當(dāng)△AOQ的面積為 時(shí),k的值為

【答案】
(1)
(2)2或2
【解析】解:(1)設(shè)Q(m, ), ∵Q為OB中點(diǎn),
∴B(2m, ),A(0, ),
∴P( , ),
∴AP:PB= :(2m﹣ )=
所以答案是: .(2)設(shè)P(n, )(n>0).
P為AB的三等分點(diǎn)分兩種情況:
①AP:PB= ,
∴B(3n, ),A(0, ),
∴直線OB的解析式為y= x= x,
聯(lián)立直線OB與反比例函數(shù)解析式,得:
解得: ,或 (舍去).
∵SAOQ= AOxQ= × × n=
解得:k=2;
②AP:PB=2,
∴B( n, ),A(0, ),
∴直線OB的解析式為y= x= x,
聯(lián)立直線OB與反比例函數(shù)解析式,得: ,
解得: ,或 (舍去).
∵SAOQ= AOxQ= × × n=
解得:k=2
綜上可知:k的值為2或2
所以答案是:2或2

【考點(diǎn)精析】解答此題的關(guān)鍵在于理解等腰直角三角形的相關(guān)知識(shí),掌握等腰直角三角形是兩條直角邊相等的直角三角形;等腰直角三角形的兩個(gè)底角相等且等于45°,以及對(duì)比例系數(shù)k的幾何意義的理解,了解幾何意義:表示反比例函數(shù)圖像上的點(diǎn)向兩坐標(biāo)軸所作的垂線段與兩坐標(biāo)軸圍成的矩形的面積.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,正方形ABCD和正方形EFCG的邊長(zhǎng)分別為3和1,點(diǎn)F,G分別在邊BC,CD上,P為AE的中點(diǎn),連接PG,則PG的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AC=BC,點(diǎn)D、E分別是邊AB、AC的中點(diǎn),延長(zhǎng)DE到F,使得EF=DE,那么四邊形ADCF是(
A.等腰梯形
B.直角梯形
C.矩形
D.菱形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1所示,E為矩形ABCD的邊AD上一點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P以1cm/秒的速度沿折線BE﹣ED﹣DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q以2cm/秒的速度沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止.設(shè)P、Q同時(shí)出發(fā)t秒時(shí),△BPQ的面積為ycm2 . 已知y與t的函數(shù)關(guān)系圖象如圖2;(其中曲線OG為拋物線的一部分,其余各部分均為線段),則下列結(jié)論:
①當(dāng)0<t≤5時(shí),y= t2;②當(dāng)t=6秒時(shí),△ABE≌△PQB;③cos∠CBE= ;④當(dāng)t= 秒時(shí),△ABE∽△QBP;
其中正確的是( )

A.①②
B.①③④
C.③④
D.①②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y= x2+bx+c與x軸交于點(diǎn)A(﹣2,0),交y軸于點(diǎn)B(0, ).直線y=kx 過(guò)點(diǎn)A與y軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)是D.

(1)求拋物線y= x2+bx+c與直線y=kx 的解析式;
(2)設(shè)點(diǎn)P是直線AD下方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、D重合),過(guò)點(diǎn)P作y軸的平行線,交直線AD于點(diǎn)M,作DE⊥y軸于點(diǎn)E.探究:是否存在這樣的點(diǎn)P,使四邊形PMEC是平行四邊形?若存在請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,作PN⊥AD于點(diǎn)N,設(shè)△PMN的周長(zhǎng)為m,點(diǎn)P的橫坐標(biāo)為x,求m與x的函數(shù)關(guān)系式,并求出m的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在平面直角坐標(biāo)系xOy中,直線y= x+6與x軸、y軸的交點(diǎn)分別為A、B兩點(diǎn),將∠OBA對(duì)折,使點(diǎn)O的對(duì)應(yīng)點(diǎn)H落在直線AB上,折痕交x軸于點(diǎn)C.

(1)直接寫出點(diǎn)C的坐標(biāo),并求過(guò)A、B、C三點(diǎn)的拋物線的解析式;
(2)若(1)中拋物線的頂點(diǎn)為D,在直線BC上是否存在點(diǎn)P,使得四邊形ODAP為平行四邊形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說(shuō)明理由;
(3)若把(1)中的拋物線向左平移3.5個(gè)單位,則圖象與x軸交于F、N(點(diǎn)F在點(diǎn)N的左側(cè))兩點(diǎn),交y軸于E點(diǎn),則在此拋物線的對(duì)稱軸上是否存在一點(diǎn)Q,使點(diǎn)Q到E、N兩點(diǎn)的距離之差最大?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=6cm,點(diǎn)M是邊AB的中點(diǎn),連結(jié)CM,點(diǎn)P從點(diǎn)C出發(fā),以1cm/s的速度沿CB運(yùn)動(dòng)到點(diǎn)B停止,以PC為邊作正方形PCDE,點(diǎn)D落在線段AC上.設(shè)點(diǎn)P的運(yùn)動(dòng)時(shí)間為t(s).
(1)當(dāng)t=時(shí),點(diǎn)E落在△MBC的邊上;
(2)以E為圓心,1cm為半徑作圓E,則當(dāng)t=時(shí),圓E與直線AB或直線CM相切.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平行四邊形ABCD中,E、F分別為邊AB、CD的中點(diǎn),BD是對(duì)角線.
(1)求證:△ADE≌△CBF;
(2)若∠ADB是直角,則四邊形BEDF是什么四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,C、G是⊙O上兩點(diǎn),且AC=CG,過(guò)點(diǎn)C的直線CD⊥BG于點(diǎn)D,交BA的延長(zhǎng)線于點(diǎn)E,連接BC,交OD于點(diǎn)F.

(1)求證:CD是⊙O的切線.
(2)若,求∠E的度數(shù).
(3)連接AD,在2的條件下,若CD=,求AD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案