【題目】甲、乙兩人進(jìn)行羽毛球比賽,把球看成點(diǎn),其飛行的路線為拋物線的一部分.如圖建立平面直角坐標(biāo)系,甲在O點(diǎn)正上方1mP處發(fā)球,羽毛球飛行的高度ym)與羽毛球距離甲站立位置(點(diǎn)O)的水平距離xm)之間滿足函敗表達(dá)式yax﹣4)2+h.已知點(diǎn)O與球網(wǎng)的水平距離為5m,球網(wǎng)的高度為1.55m,球場(chǎng)邊界距點(diǎn)O的水平距離為10m

(1)當(dāng)a=﹣時(shí),求h的值,并通過(guò)計(jì)算判斷此球能否過(guò)網(wǎng).

(2)若甲發(fā)球過(guò)網(wǎng)后,乙在另一側(cè)距球網(wǎng)水平距離lm處起跳扣球沒(méi)有成功,球在距球網(wǎng)水平距離lm,離地面高度2.2m處飛過(guò),通過(guò)計(jì)算判斷此球會(huì)不會(huì)出界?

【答案】(1)球能過(guò)網(wǎng);(2)此球不會(huì)出界.

【解析】

(1)①將點(diǎn)P(0,1)代入y=(x-4)2+h即可求得h;②求出x=5時(shí),y的值,與1.55比較即可得出判斷;
(2)將(0,1)、(6,2.2)代入y=a(x-4)2+h代入即可求得a、h,得出關(guān)系式,求出x=10時(shí),y的值比較即可判斷

(1)當(dāng)a=﹣時(shí),y=﹣x﹣4)2+h,

將點(diǎn)P(0,1)代入得:1=﹣(﹣4)2+h,

解得:h

y=﹣x﹣4)2+,

當(dāng)x=5時(shí),y=﹣×(5﹣4)2+,

=1.75>1.55,

∴球能過(guò)網(wǎng).

(2)由題意知,球過(guò)P(0,1)、(6,2.2)兩點(diǎn),

,

解得:,

所以y=﹣x﹣4)2+,

當(dāng)x=10時(shí),y=﹣(10﹣4)2+=﹣1<0,

∴此球不會(huì)出界.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AD△ABC的高,BE平分∠ABCADE,若∠C=70°,∠BED=64°,求∠BAC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在不透明的袋子中有四張標(biāo)有數(shù)字1,2,3,4的卡片,小明、小華兩人按照各自的規(guī)則玩抽卡片游戲。

小明畫(huà)出樹(shù)形圖如下:

小華列出表格如下:

第一次

第二次

1

2

3

4

1

(1,1)

(2,1)

(3,1)

(4,1)

2

(1,2)

(2,2)

(4,2)

3

(1,3

(2,3)

(3,3)

(4,3)

4

(1,4)

(2,4)

(3,4)

(4,4)

回答下列問(wèn)題:

(1)根據(jù)小明畫(huà)出的樹(shù)形圖分析,他的游戲規(guī)則是:隨機(jī)抽出一張卡片后 (填放回不放回),再隨機(jī)抽出一張卡片;

(2)根據(jù)小華的游戲規(guī)則,表格中表示的有序數(shù)對(duì)為 ;

(3)規(guī)定兩次抽到的數(shù)字之和為奇數(shù)的獲勝,你認(rèn)為淮獲勝的可能性大?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市某蔬菜生產(chǎn)基地在氣溫較低時(shí),用裝有恒溫系統(tǒng)的大棚栽培一種在自然光照且溫度為18的條件下生長(zhǎng)最快的新品種.圖是某天恒溫系統(tǒng)從開(kāi)啟到關(guān)閉及關(guān)閉后,大棚內(nèi)溫度y()隨時(shí)間x(小時(shí))變化的函數(shù)圖象,其中BC段是雙曲線的一部分.請(qǐng)根據(jù)圖中信息解答下列問(wèn)題:

(1)恒溫系統(tǒng)在這天保持大棚內(nèi)溫度18的時(shí)間有多少小時(shí)?

(2)求k的值;

(3)當(dāng)x=16時(shí),大棚內(nèi)的溫度約為多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一架長(zhǎng)25米的梯子,斜靠在豎直的墻上,這時(shí)梯子底端離墻7米.

(1)此時(shí)梯子頂端離地面多少米?

(2)若梯子頂端下滑4米,那么梯子底端將向左滑動(dòng)多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(1)發(fā)現(xiàn):如圖1,點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BCaABb且回答:當(dāng)點(diǎn)A位于那條線段的延長(zhǎng)線上時(shí),線段AC的長(zhǎng)取得最大值,且最大值為多少(用含a、b的式子表示).

(2)應(yīng)用:點(diǎn)A為線段BC外一動(dòng)點(diǎn),且BC=4,AB=2,如圖2所示,分別以AB,AC為邊,作等邊三解形ABD和等邊三角形ACE,連接CD,BE請(qǐng)找出圖中與BE相等的線段,并說(shuō)明理由;直接寫(xiě)出線段BE長(zhǎng)的最大值.

(3)拓展:如圖3,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(2,0),點(diǎn)B的坐標(biāo)為(5,0),點(diǎn)P為線段AB外一動(dòng)點(diǎn),且PA=2,PMPB,∠BPM=90°,請(qǐng)直接寫(xiě)出線段AM長(zhǎng)的最大值及此時(shí)點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在山腳的處測(cè)得山頂的仰角為,沿著坡度為的斜坡前進(jìn)米到處(即,米),測(cè)得的仰角為,求此山的高度.(答案保留根號(hào))

(參考數(shù)據(jù):,,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖 1,已知拋物線 L1:y=﹣x2+2x+3 x 軸交于 A,B 兩點(diǎn)點(diǎn) A在點(diǎn) B 的左側(cè),與 y 軸交于點(diǎn) C,在 L1 上任取一點(diǎn) P,過(guò)點(diǎn) P 作直線 l⊥x 軸, 垂足為D,將 L1 沿直線 l 翻折得到拋物線L2,交 x 軸于點(diǎn) M,N(點(diǎn) M 在點(diǎn) N 的左側(cè)).

(1)當(dāng) L1 L2 重合時(shí),求點(diǎn) P 的坐標(biāo);

(2)當(dāng)點(diǎn) P 與點(diǎn) B 重合時(shí),求此時(shí) L2 的解析式;并直接寫(xiě)出 L1 與 L2 中,y 均隨x 的增大而減小時(shí)的 x 的取值范圍;

(3)連接 PM,PB,設(shè)點(diǎn) P(m,n),當(dāng) n=m 時(shí),求△PMB 的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,AC,BD相交于點(diǎn)O,OAC的中點(diǎn),AD//BC,AC=8,BD=6.

(1)求證:四邊形ABCD是平行四邊形;

(2)若ACBD,求ABCD的面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案