【題目】南博汽車城銷售某種型號的汽車,每輛進貨價為25萬元,市場調研表明:當銷售價為29萬元時,平均每周能售出8輛,而當銷售價每降低0.5萬元時,平均每周能多售出4輛.如果設每輛汽車降價x萬元,每輛汽車的銷售利潤y萬元.(銷售利潤銷售價進貨價)

(1) yx的函數(shù)關系式;在保證商家不虧本的前提下,寫出x的取值范圍;

(2) 假設這種汽車平均每周的銷售利潤為z萬元,試寫出zx之間的函數(shù)關系式;

(3) 當每輛汽車的定價為多少萬元時,平均每周的銷售利潤最大?最大利潤是多少?

【答案】(1) y=8x+8 (0≤x≤4)(2) z=-8x2+24x+32(3) 50

【解析】

(1

2

時,

當定價為萬元時,有最大利潤,最大利潤為50萬元.

或:當

當定價為萬元時,有最大利潤,最大利潤為50萬元

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】王師傅非常喜歡自駕游,為了解他新買的轎車的耗油情況,將油箱加滿后進行了耗油實驗,得到下表中的數(shù)據(jù):

轎車行駛的路程

······

油箱中的剩余油量

·····

1)在這個問題中,自變量是_ 因變量是_ ;

2)該轎車油箱的容量為__ L,行駛時,估計油箱中的剩余油量為____;

3)王師傅將油箱加滿后,駕駛該轎車從地前往地,到達地時油箱中的剩余油量為,請估計兩地之間的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把一張對邊互相平行的紙條折成如圖所示,是折痕,若,則下列結論:①;②;③;④正確的序號為___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文物古跡遺址每周都吸引大量中外游客前來參觀,如果游客過多,對文物古跡會產生不良影響,但同時考慮到文物的修繕和保存費用的問題,還要保證有一定的門票收入,因此遺址的管理部門采取了升、降門票價格的方法來控制參觀人數(shù).在實施過程中發(fā)現(xiàn):每周參觀人數(shù)y(人)與票價x(元)之間怡好構成一次函數(shù)關系.

(Ⅰ)根據(jù)題意完成下列表格

票價x(元)

10

15

x

18

參觀人數(shù)y(人)

7000

4500

   

   

(Ⅱ)在這樣的情況下,如果要確保每周有40000元的門票收入,那么每周應限定參觀人數(shù)是多少?門票價格應定位多少元?

(Ⅲ)門票價格應該是多少元時,門票收入最大?這樣每周應有多少人參觀?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】用直接開平方法解下列方程:

(1)(x﹣2)2=3;

(2)2(x﹣3)2=72;

(3)9(y+4)2﹣49=0;

(4)4(2y﹣5)2=9(3y﹣1)2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC在直角坐標系中,

1)請寫出△ABC各頂點的坐標;

2)若把△ABC向上平移2個單位,再向左平移1個單位得到△A′B′C′,寫出A′、B′、C′的坐標,并在圖中畫出平移后圖形;

3)求出△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知點O是等腰直角三角形ABC斜邊上的中點,AB=BC,EAC上一點,連結EB.

(1) 如圖1,若點E在線段AC上,過點AAMBE,垂足為M,交BO于點F.求證:OE=OF;

(2)如圖2,若點EAC的延長線上,AMBE于點M,交OB的延長線于點F,其它條件不變,則結論“OE=OF”還成立嗎?如果成立,請給出證明;如果不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖點P是菱形ABCD的對角線AC上的一個動點,過點P垂直于AC的直線交菱形ABCD的邊于M、N兩點設AC=2,BD=1AP=x,CMN的面積為y,則y關于x的函數(shù)圖象大致形狀是( )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在△ABC中,∠A=50°,點D,E分別是邊AC,AB上的點(不與A,B,C重合),點P是平面內一動點(P與D,E不在同一直線上),設∠PDC=∠1,∠PEB=∠2,∠DPE=∠α.

(1)若點P在邊BC上運動(不與點B和點C重合),如圖(1)所示,則∠1+∠2=________

(用α的代數(shù)式表示).

(2)若點PABC的外部,如圖(2)所示,則∠α,∠1,∠2之間有何關系?寫出你的結論,并說明理由.

(3)當點P在邊CB的延長線上運動時,試畫出相應圖形,標注有關字母與數(shù)字,并寫出對應的∠α,∠1,∠2之間的關系式.(不需要證明)

查看答案和解析>>

同步練習冊答案