【題目】李欣同學(xué)下午530放學(xué)離校,此刻時(shí)鐘上時(shí)針與分針的夾角大小應(yīng)為________

【答案】15°

【解析】解:5點(diǎn)30分時(shí),時(shí)針和分針中間相差0.5大格.鐘表12個(gè)數(shù),每相鄰兩個(gè)數(shù)字之間的夾角為30°,∴5點(diǎn)30分時(shí)分針與時(shí)針的夾角是0.5×30°=15°.故答案為:15°

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】點(diǎn)P(2,﹣3)先向左平移4個(gè)單位長(zhǎng)度,再向上平移1個(gè)單位長(zhǎng)度,得到點(diǎn)P′的坐標(biāo)是

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列圓的內(nèi)接正多邊形中,一條邊所對(duì)的圓心角最大的圖形是( )
A.正三角形
B.正方形
C.正五邊形
D.正六邊形

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】武漢開(kāi)發(fā)區(qū)一初中官士墩校區(qū)前期建設(shè)投入約153000000元.?dāng)?shù)據(jù)153000000用科學(xué)記數(shù)法可表示為_________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】【知識(shí)生成】我們已經(jīng)知道,通過(guò)不同的方法表示同一圖形的面積,可以探求相應(yīng)的等式.

2002年8月在北京召開(kāi)了國(guó)際數(shù)學(xué)大會(huì),大會(huì)會(huì)標(biāo)如圖1所示,它是由四個(gè)形狀大小完全相同的直角三角形與中間的小正方形拼成的一個(gè)大正方形.直角三角形的兩條直角邊長(zhǎng)分別為a、b ,斜邊長(zhǎng)為c.

(1)圖中陰影部分的面積用兩種方法可分別表示為 ;

(2)你能得出的a, b, c之間的數(shù)量關(guān)系是 (等號(hào)兩邊需化為最簡(jiǎn)形式);

(3)若一直角三角形的兩條直角邊長(zhǎng)為5和12, 則其斜邊長(zhǎng)為 .

【知識(shí)遷移】通過(guò)不同的方法表示同一幾何體的體積,也可以探求相應(yīng)的等式.

如圖2是邊長(zhǎng)為的正方體,被如圖所示的分割線分成8塊.

(4)用不同的方法計(jì)算這個(gè)正方體的體積,就可以得到一個(gè)等式,這個(gè)等式可以為

(5)已知, ,利用上面的規(guī)律求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將平行四邊形紙片ABCD按如圖方式折疊,使點(diǎn)C與點(diǎn)A重合,點(diǎn)D落到D處,折痕為EF.

(1)、求證:ABE≌△ADF;

(2)、連接CF,判斷四邊形AECF是否為平行四邊形?請(qǐng)證明你的結(jié)論。

(3)、若AE=5,求四邊形AECF的周長(zhǎng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某店出售甲、乙、丙三種不同型號(hào)的電動(dòng)車(chē),已知甲型車(chē)的第一季度銷(xiāo)售額占這三種車(chē)總銷(xiāo)售額的56%,第二季度乙、丙兩種型號(hào)車(chē)的銷(xiāo)售額比第一季度減少了a%,但該商場(chǎng)電動(dòng)車(chē)的總銷(xiāo)售額比第一季度增加了12%,且甲型車(chē)的銷(xiāo)售額比第一季度增加了23%,則a的值為  

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知平行四邊形ABCD中,對(duì)角線AC,BD交于點(diǎn)O,EBD延長(zhǎng)線上的點(diǎn),且△ACE是等邊三角形.

(1)求證:四邊形ABCD是菱形;

(2)若∠AED=2EAD,求證:四邊形ABCD是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】閱讀理解:配方法是中學(xué)數(shù)學(xué)的重要方法,用配方法可求最大(小)值。如對(duì)于任意正實(shí)數(shù)、x,可作變形:x+=()2+2,因?yàn)?/span>()20,所以x+2(當(dāng)x=時(shí)取等號(hào))

記函數(shù)y=x+(a>0,x>0),由上述結(jié)論可知:當(dāng)x=時(shí),該函數(shù)有最小值為2

直接應(yīng)用: 已知函數(shù)y1=x(x>0)與函數(shù)y2 = (x>0),則當(dāng)x= 時(shí),y1+y2取得最小值為

變形應(yīng)用: 已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=(x+1)2+4(x>-1),求 的最小值,并指出取得該最小值時(shí)相應(yīng)的x的值

實(shí)際應(yīng)用:汽車(chē)的經(jīng)濟(jì)時(shí)速是指汽車(chē)最省油的行駛速度。某種汽車(chē)在每小時(shí)70~110公里之間行駛時(shí)(含70公里和110公里),每公里耗油(+)升。若該汽車(chē)以每小時(shí)x公里的速度勻速行駛,1小時(shí)的耗油量為y升.

、求y關(guān)于x的函數(shù)關(guān)系式(寫(xiě)出自變量x的取值范圍);

、求該汽車(chē)的經(jīng)濟(jì)時(shí)速及經(jīng)濟(jì)時(shí)速的百公里耗油量(結(jié)果保留小數(shù)點(diǎn)后一位).

查看答案和解析>>

同步練習(xí)冊(cè)答案