(1)已知△ABC中,BO、CO分別是∠ABC、∠ACB的平分線,且BO、CO相交于點(diǎn)O,試探索∠BOC與∠A之間的數(shù)量關(guān)系,并說明理由.
精英家教網(wǎng)
(2)已知BO、CO分別是△ABC的外角∠DBC、∠ECB的角平分線,BO、CO相交于O,試探索∠BOC與∠A之間的數(shù)量關(guān)系,并說明理由.
精英家教網(wǎng)
(3)已知:BD為△ABC的角平分線,CO為△ABC的外角平分線,它與BO的延長線交于點(diǎn)O,試探索∠BOC與∠A的數(shù)量關(guān)系,并說明理由.
精英家教網(wǎng)
分析:(1)根據(jù)三角形內(nèi)角和定理求出∠A+2∠1+2∠2=180°,再根據(jù)三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和,可證∠BOC=90°+
1
2
∠A.
(2)由三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可證2∠1+2∠2=2∠A+∠ABC+∠ACB=∠A+180°,再根據(jù)三角形內(nèi)角和定理可證2∠BOC=180°-∠A.
(3)由三角形的一個外角等于與它不相鄰的兩個內(nèi)角的和可證∠ACE=2∠2=∠A+2∠1,∠2=∠1+∠BOC,即可證)∠BOC=
1
2
∠A.
解答:精英家教網(wǎng)解:(1)∠BOC=90°+
1
2
∠A.
理由如下:延長BO交AC于點(diǎn)D,
∵BO、CO分別是∠ABC、∠ACB的平分線,
∴∠A+2∠1+2∠2=180°,
∠BDC=∠A+∠1,
∠BOC=∠BDC+∠2,
∴∠BOC=∠A+∠1+∠2=90°+
1
2
∠A.
(2)∠BOC=90°-
1
2
∠A.
理由如下:
∵BO、CO分別是△ABC的外角∠DBC、∠ECB的角平分線,
∴∠DBC=2∠1=∠ACB+∠A,
∠ECB=2∠2=∠ABC+∠A,
∴2∠1+2∠2=2∠A+∠ABC+∠ACB=∠A+180°,
又∵∠1+∠2+∠BOC=180°,
∴2∠BOC=180°-∠A,即∠BOC=90°-
1
2
∠A.

(3)∠BOC=
1
2
∠A.
理由如下:
∵BD為△ABC的角平分線,CO為△ABC的外角平分線,
∴∠ACE=2∠2=∠A+2∠1,
∠2=∠1+∠BOC,
∴∠BOC=
1
2
∠A.
點(diǎn)評:本題考查三角形外角的性質(zhì)及三角形的內(nèi)角和定理,解答的關(guān)鍵是溝通外角和內(nèi)角的關(guān)系.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,∠ACB=90°,AC=BC,P、Q分別是邊AB、BC上的動點(diǎn),且點(diǎn)P不與點(diǎn)A、B重合,點(diǎn)Q不與點(diǎn)B、C重合.
(1)在以下五個結(jié)論中:①∠CQP=45°;②PQ=AC;③以A、P、C為頂點(diǎn)的三角形全等于△PQB;④以A、P、C為頂點(diǎn)的三角形全等于△CPQ;⑤以A、P、C為頂點(diǎn)的三角形相似于△CPQ.一定不成立的是
 
.(只需將結(jié)論的代號填入題中的模線上).
(2)設(shè)AC=BC=1,當(dāng)CQ的長取不同的值時,△CPQ是否可能為直角三角形?若可能,請說明所有的精英家教網(wǎng)情況;若不可能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知△ABC中,DE∥BC,EF∥AB,AB=3,BC=6,AD:DB=2:1,則四邊形DBFE的周長為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖所示,已知△ABC中,AB=AC,以AB為直徑作⊙O交BC于D,交AC于E,過D作DF⊥AC于F
(1)求證:DF是⊙O的切線;
(2)連接DE,且AB=4,若∠FDC=30°,試求△CDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知△ABC中,AB=3,AC=5,第三邊BC的長為一元二次方程x2-9x+20=0的一個根,則該三角形為
等腰或直角
等腰或直角
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知△ABC中,AB=AC,AB垂直平分線交AC于D,連接BE,若∠A=40°,則∠EBC=( 。

查看答案和解析>>

同步練習(xí)冊答案