【題目】在平面直角坐標(biāo)系中,O為坐標(biāo)原點(diǎn),設(shè)點(diǎn)P(1,t)在反比例函數(shù)y= 的圖象上,過點(diǎn)P作直線l與x軸平行,點(diǎn)Q在直線l上,滿足QP=OP.若反比例函數(shù)y= 的圖象經(jīng)過點(diǎn)Q,則k= .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校為了解八年級學(xué)生最喜歡的球類情況,隨機(jī)抽取了八年級部分學(xué)生進(jìn)行問卷調(diào)查,調(diào)查分為最喜歡籃球、乒乓球、足球、排球共四種情況,每名同學(xué)選且只選一項(xiàng),現(xiàn)將調(diào)查結(jié)果繪制成如下所示的兩幅統(tǒng)計圖.
請結(jié)合這兩幅統(tǒng)計圖,解決下列問題:
(1)在這次問卷調(diào)查中,一共抽取了名學(xué)生;
(2)請補(bǔ)全條形統(tǒng)計圖;
(3)若該校八年級共有300名學(xué)生,請你估計其中最喜歡排球的學(xué)生人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y= 的圖象經(jīng)過點(diǎn)(﹣1,﹣2 ),點(diǎn)A是該圖象第一象限分支上的動點(diǎn),連結(jié)AO并延長交另一分支于點(diǎn)B,以AB為斜邊作等腰直角三角形ABC,頂點(diǎn)C在第四象限,AC與x軸交于點(diǎn)P,連結(jié)BP.
(1)k的值為 .
(2)在點(diǎn)A運(yùn)動過程中,當(dāng)BP平分∠ABC時,點(diǎn)C的坐標(biāo)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC是矩形ABCD的對角線,⊙O是△ABC的內(nèi)切圓,現(xiàn)將矩形ABCD按如圖所示的方式折疊,使點(diǎn)D與點(diǎn)O重合,折痕為FG.點(diǎn)F,G分別在邊AD,BC上,連結(jié)OG,DG.若OG⊥DG,且⊙O的半徑長為1,則下列結(jié)論不成立的是( )
A.CD+DF=4
B.CD﹣DF=2 ﹣3
C.BC+AB=2 +4
D.BC﹣AB=2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景
已知在△ABC中,AB邊上的動點(diǎn)D由A向B運(yùn)動(與A,B不重合),點(diǎn)E與點(diǎn)D同時出發(fā),由點(diǎn)C沿BC的延長線方向運(yùn)動(E不與C重合),連接DE交AC于點(diǎn)F,點(diǎn)H是線段AF上一點(diǎn).
(1)初步嘗試
如圖1,若△ABC是等邊三角形,DH⊥AC,且點(diǎn)D,E的運(yùn)動速度相等.
求證:HF=AH+CF.
小五同學(xué)發(fā)現(xiàn)可以由以下兩種思路解決此問題:
思路一:過點(diǎn)D作DG∥BC,交AC于點(diǎn)G,先證GH=AH,再證GF=CF,從而證得結(jié)論成立;
思路二:過點(diǎn)E作EM⊥AC,交AC的延長線于點(diǎn)M,先證CM=AH,再證HF=MF,從而證得結(jié)論成立.
請你任選一種思路,完整地書寫本小題的證明過程(如用兩種方法作答,則以第一種方法評分);
(2)類比探究
如圖2,若在△ABC中,∠ABC=90°,∠ADH=∠BAC=30°,且D,E的運(yùn)動速度之比是 :1,求 的值;
(3)延伸拓展
如圖3,若在△ABC中,AB=AC,∠ADH=∠BAC=36°,記 =m,且點(diǎn)D,E運(yùn)動速度相等,試用含m的代數(shù)式表示 (直接寫出結(jié)果,不必寫解答過程).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中(BC>AC),∠ACB=90°,點(diǎn)D在AB邊上,DE⊥AC于點(diǎn)E.
(1)若 = ,AE=2,求EC的長;
(2)設(shè)點(diǎn)F在線段EC上,點(diǎn)G在射線CB上,以F,C,G為頂點(diǎn)的三角形與△EDC有一個銳角相等,F(xiàn)G交CD于點(diǎn)P.問:線段CP可能是△CFG的高線還是中線?或兩者都有可能?請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計算下列各題
(1)計算: ﹣4sin45°﹣ + .
(2)先化簡,再求值:a(a﹣3b)+(a+b)2﹣a(a﹣b),其中a=1,b=﹣ .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com