【題目】如圖,在平面直角坐標(biāo)系xOy中,把矩形COAB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)α角,得到矩形CFED.設(shè)FC與AB交于點(diǎn)H,且A(0,4),C(8,0).
(1)當(dāng)α=60°時(shí),△CBD的形狀是______;
(2)設(shè)AH=m
①連接HD,當(dāng)△CHD的面積等于10時(shí),求m的值;
②當(dāng)0°<α<90°旋轉(zhuǎn)過程中,連接OH,當(dāng)△OHC為等腰三角形時(shí),請(qǐng)直接寫出m的值.
【答案】(1)等邊三角形(2)①m=5;②m的值是4或4或8-4
【解析】
(1)先根據(jù)旋轉(zhuǎn)的性質(zhì)得∠BCD=60°,CB=CD,然后根據(jù)等邊三角形的判定方法得到△CBD為等邊三角形;
(2)①根據(jù)△CHD的面積等于10,可得CH=5,利用勾股定理計(jì)算BH的長,從而得m的值;
②分三種情況:
i)當(dāng)OH=CH時(shí),如圖2,
ii)當(dāng)OH=OC=8時(shí),如圖3,
iii)當(dāng)OC=CH=8時(shí),如圖4,此時(shí)F與H重合,
分別根據(jù)勾股定理計(jì)算可得結(jié)論.
解:(1)∵矩形COAB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)60度的角,得到矩形CFED,
∴∠BCD=60°,CB=CD,
∴△CBD為等邊三角形;
故答案為:等邊三角形;
(2)①∵四邊形CFED是矩形,
∴∠DCH=90°,
∵△CHD的面積等于10,
∴CDCH=10,
∵CD=4,
∴,CH=5,
Rt△BCH中,由勾股定理得:BH===3,
∴AH=8-3=5,
即m=5;
②當(dāng)△OHC為等腰三角形時(shí),分三種情況:
i)當(dāng)OH=CH時(shí),如圖2,
∵OA=BC,
∴Rt△AOH≌Rt△BCH(HL),
∴AH=BH=4,
即m=4;
ii)當(dāng)OH=OC=8時(shí),如圖3,
∵OA=4,
由勾股定理得:AH===4,
即m=4;
iii)當(dāng)OC=CH=8時(shí),如圖4,此時(shí)F與H重合,
則BH=4,
∴m=8-4,
綜上,m的值是4或4或8-4.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)E為正方形ABCD的邊AD上一點(diǎn),連接BE,過點(diǎn)C作CN⊥BE,垂足為M,交AB于點(diǎn)N.
(1)求證:△ABE≌△BCN;
(2)若N為AB的中點(diǎn),求tan∠ABE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:P、Q分別是兩條線段a和b上任意一點(diǎn),線段PQ長度的最小值叫做線段與線段的距離.已知O(0,0),A(4,0),B(m,n),C(m+4,n)是平面直角系中四點(diǎn).
(1)根據(jù)上述定義,當(dāng)m=2,n=3時(shí),如圖1,線段BC與線段OA的距離是 ,當(dāng)m=5,n=3時(shí),如圖2,線段BC與線段OA的距離(即線段AB的長)為 .
(2)如圖3,若點(diǎn)B落在圓心為A,半徑為2的圓上,線段BC與線段OA的距離記為d,求d關(guān)于m的函數(shù)解析式.
(3)當(dāng)m的值變化時(shí),動(dòng)線段BC與線段OA的距離始終為2,線段BC的中點(diǎn)為M.點(diǎn)D的坐標(biāo)為(0,2),m≥0,n≥0,作MH⊥x軸,垂足為H,是否存在m的值,使以A、M、H為頂點(diǎn)的三角形與△AOD相似?若存在,求出m的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是菱形,AB=4,且∠ABC=∠ABE=60°,G為對(duì)角線BD(不含B點(diǎn))上任意一點(diǎn),將△ABG繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到△EBF,當(dāng)AG+BG+CG取最小值時(shí)EF的長( )
A.B.C.D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在邊長為1的正方形組成的網(wǎng)格中,△AOB的頂點(diǎn)均在格點(diǎn)上,點(diǎn)A、B的坐標(biāo)分別是A(3,2)、B(1,3).△AOB繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°后得到△A1OB1.(直接填寫答案)
(1)點(diǎn)A關(guān)于點(diǎn)O中心對(duì)稱的點(diǎn)的坐標(biāo)為 ;
(2)點(diǎn)A1的坐標(biāo)為 ;
(3)在旋轉(zhuǎn)過程中,點(diǎn)B經(jīng)過的路徑為弧BB1,那么弧BB1的長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2018年3月30日初2018級(jí)同學(xué)以優(yōu)異的成績(jī)?cè)陔p福育才中學(xué)完成了中招體育測(cè)試,初2019級(jí)為了準(zhǔn)備明年的體考,對(duì)1、2、3、4班進(jìn)行了體考模擬測(cè)試,并對(duì)三個(gè)班的滿分進(jìn)行了統(tǒng)計(jì),繪制了如圖1和如圖2兩幅不完整的統(tǒng)計(jì)圖,根據(jù)圖中提供的信息完成以下問題.
(1)扇形統(tǒng)計(jì)圖中2班體育成績(jī)滿分人數(shù)對(duì)應(yīng)的圓心角是 度;并補(bǔ)全條形統(tǒng)計(jì)圖;
(2)經(jīng)過體育老師推薦,這些滿分同學(xué)中有4名同學(xué)(1女3男)的跳遠(yuǎn)動(dòng)作十分標(biāo)準(zhǔn),12班班主任準(zhǔn)備從這4名同學(xué)中任選2名給自己班級(jí)的同學(xué)示范標(biāo)準(zhǔn)動(dòng)作,請(qǐng)利用畫樹狀圖或列表的方法求出選出2名同學(xué)恰好是一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了解某校中學(xué)生對(duì)《最強(qiáng)大腦》、《朗讀者》、《中國詩詞大會(huì)》、《出彩中國人》四個(gè)電視節(jié)目的喜愛情況,隨機(jī)抽取了x名學(xué)生進(jìn)行調(diào)查統(tǒng)計(jì)(要求每名學(xué)生選出并且只能選出一個(gè)自己最喜愛的節(jié)目),并將調(diào)查結(jié)果繪制成如圖統(tǒng)計(jì)圖表:根據(jù)以上提供的信息,解答下列問題:
節(jié)目 | 人數(shù)(名) | 百分比 |
最強(qiáng)大腦 | 5 | 10% |
朗讀者 | 15 | b% |
中國詩詞大會(huì) | a | 40% |
出彩中國人 | 10 | 20% |
(1)x= ,a= ,b= ;
(2)補(bǔ)全上面的條形統(tǒng)計(jì)圖;
(3)在喜愛《最強(qiáng)大腦》的學(xué)生中,有2名女同學(xué),其余為男同學(xué),現(xiàn)要從中隨機(jī)抽取2名同學(xué)代表學(xué)校參加濰坊市組織的競(jìng)賽活動(dòng),請(qǐng)用樹狀圖或列表法求出所抽取的2名同學(xué)恰好是1名男同學(xué)和1名女同學(xué)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A.B.C分別是⊙O上的點(diǎn),∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點(diǎn),且AP=AC.
(1)求證:AP是⊙O的切線;
(2)求PD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知反比例函數(shù)的圖象過點(diǎn)A(3,2).
(1)試求該反比例函數(shù)的表達(dá)式;
(2)M(m,n)是反比例函數(shù)圖象上的一動(dòng)點(diǎn),其中0<m<3,過點(diǎn)M作直線MB∥x軸,交y軸于點(diǎn)B;過點(diǎn)A作直線AC∥y軸,交x軸于點(diǎn)C,交直線MB于點(diǎn)D.當(dāng)四邊形OADM的面積為6時(shí),請(qǐng)判斷線段BM與DM的大小關(guān)系,并說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com