【題目】為推進郴州市創(chuàng)建國家森林城市工作,盡快實現(xiàn)讓森林走進城市,讓城市擁抱森林的構想,今年三月份,某縣園林辦購買了甲、乙兩種樹苗共1000棵,其中甲種樹苗每棵40元,乙種樹苗每棵50元,據(jù)相關資料表明:甲、乙兩種樹苗的成活率分別為85%90%

1)若購買甲、乙兩種樹苗共用去了46500元,則購買甲、乙兩種樹苗各多少棵?

2)若要使這批樹苗的成活率不低于88%,則至多可購買甲種樹苗多少棵?

【答案】1350,650;(2400.

【解析】

試題(1)方程的應用解題關鍵是設出未知數(shù),找出關等量關系,列出方程求解.本題設購買甲、乙兩種樹苗各x棵和y棵,根據(jù)甲、乙兩種樹苗共1000顆和甲、乙兩種樹苗共用去了46500元,列出方程組,進行求解即可.

2)不等式的應用解題關鍵是找出不等量關系,列出不等式求解.本題設至多可購買甲種樹苗x棵,則購買乙種樹苗為(1000﹣x)棵,根據(jù)這批樹苗的成活率不低于88%,列出不等式,求解即可.

試題解析:(1)設購買甲、乙兩種樹苗各x棵和y棵,根據(jù)題意得:

,

解得:

答:購買甲、乙兩種樹苗各350棵和650.

2)設至多可購買甲種樹苗x棵,則購買乙種樹苗為(1000﹣x)棵,根據(jù)題意得,

解得x≤400,

答:至多可購買甲種樹苗400棵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD 中,點EAD上,ECAB,EBDC,若ABE面積為5,ECD的面積為1,則BCE的面積是__________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場銷售一批名牌襯衫,平均每天可銷售20件每件盈利40元.為了擴大銷售,增加盈利,盡量減少庫存,商場決定采取適當?shù)慕祪r措施.經(jīng)調查發(fā)現(xiàn),如果每件襯衫每降價5元,商場平均每天可多售出10件,求:

1)若商場每件襯衫降價10元,則商場每天可盈利多少元?

2)若商場平均每天要盈利1250元,每件襯衫應降價多少元?

3)要使商場平均每天盈利1500元,可能嗎?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點DABC的外部,ADBC,點E在邊AB上,ABADBCAE

1)求證:∠BAC=∠AED;

2)在邊AC取一點F,如果∠AFE=∠D,求證:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】列方程()解應用題

打折前,買60A商品和30B商品用了1080元,買50A商品和10B商品用了840元.打折后,買500A商品和500B商品用了9600元,比不打折少花費多少錢?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=ax2+x+cx軸交于AB兩點,與y軸交于C點,且A(2,0),C(0,-4),直線ly=-x-4x軸交于點D,點P是拋物線y=ax2+x+c上的一動點,過點PPEx軸,垂足為E,交直線lF

(1)試求該拋物線表達式;

(2)如圖(1),若點P在第三象限,四邊形PCOF是平行四邊形,求P點的坐標;

(3)如圖(2),連接AC.求證:△ACD是直角三角形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AB為⊙O的直徑,C為⊙O上一點,CE與⊙O切于點C,交AB的延長線于點E,過點AADECEC的延長線于點D,交⊙O于點F,連接BCCF

(1)求證:AC平分∠BAD;

(2)AD6,∠BAF60°,求四邊形ABCF的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】1)解不等式組,并求出最小整數(shù)解與最大整數(shù)解的和.

2)先化簡,再求值,其中x滿足方程x2+x20

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】中華文明,源遠流長;中華漢字,寓意深廣.為了傳承中華民族優(yōu)秀傳統(tǒng)文化,我市某中學舉行“漢字聽寫”比賽,賽后整理參賽學生的成績,將學生的成績分為A,BC,D四個等級,并將結果繪制成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖,但均不完整.

請你根據(jù)統(tǒng)計圖解答下列問題:

1)參加比賽的學生共有____名;

2)在扇形統(tǒng)計圖中,m的值為____,表示“D等級”的扇形的圓心角為____度;

3)組委會決定從本次比賽獲得A等級的學生中,選出2名去參加全市中學生“漢字聽寫”大賽.已知A等級學生中男生有1名,請用列表法或畫樹狀圖法求出所選2名學生恰好是一名男生和一名女生的概率.

查看答案和解析>>

同步練習冊答案