【題目】在平行四邊形ABCD中,∠BAD的平分線交線段BC于點E,交線段DC的延長線于點F,以ECCF為鄰邊作平行四邊形ECFG

(1)如圖1,證明平行四邊形ECFG為菱形;

(2)如圖2,若∠ABC=90°,MEF的中點,求∠BDM的度數(shù);

(3)如圖3,若∠ABC=120°,請直接寫出∠BDG的度數(shù).

【答案】(1)證明見解析;

(2)∠BDM的度數(shù)為45°;

(3)∠BDG的度數(shù)為60°.

【解析】試題分析:1)平行四邊形的性質(zhì)可得ADBC,ABCD,再根據(jù)平行線的性質(zhì)證明∠CEF=CFE,根據(jù)等角對等邊可得CE=CF,再有條件四邊形ECFG是平行四邊形,可得四邊形ECFG為菱形;

2)首先證明四邊形ECFG為正方形,再證明BME≌△DMC可得DM=BMDMC=BME,再根據(jù)∠BMD=BME+EMD=DMC+EMD=90°可得到∠BDM的度數(shù);

3)延長AB、FG交于H,連接HD,求證平行四邊形AHFD為菱形,得出ADH,DHF為全等的等邊三角形,證明BHD≌△GFD,即可得出答案.

試題解析:(1)∵AF平分∠BAD

∴∠BAF=∠DAF,

∵四邊形ABCD是平行四邊形,

ADBC,ABCD,

∴∠DAF=∠CEF,∠BAF=∠CFE,

∴∠CEF=∠CFE,

CE=CF,

又∵四邊形ECFG是平行四邊形,

∴四邊形ECFG為菱形.

(2)如圖,連接BM,MC,

∵∠ABC=90°,四邊形ABCD是平行四邊形,

∴四邊形ABCD是矩形,

又由(1)可知四邊形ECFG為菱形,

ECF=90°,

∴四邊形ECFG為正方形.

∵∠BAF=∠DAF,

BE=AB=DC,

M為EF中點,

∴∠CEM=∠ECM=45°,

∴∠BEM=∠DCM=135°,

在△BME和△DMC中,

∴△BME≌△DMC(SAS),

MB=MD

DMC=∠BME

∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,

∴△BMD是等腰直角三角形,

∴∠BDM=45°;

(3)∠BDG=60°,

延長AB、FG交于H,連接HD

ADGFABDF,

∴四邊形AHFD為平行四邊形,

∵∠ABC=120°,AF平分∠BAD,

∴∠DAF=30°,∠ADC=120°,∠DFA=30°,

∴△DAF為等腰三角形,

AD=DF,

∴平行四邊形AHFD為菱形,

∴△ADH,△DHF為全等的等邊三角形,

DH=DF,∠BHD=∠GFD=60°,

FG=CE,CE=CF,CF=BH,

BH=GF,

在△BHD與△GFD中,

,

∴△BHD≌△GFD(SAS),

∴∠BDH=∠GDF

∴∠BDG=∠BDH+∠HDG=∠GDF+∠HDG=60°.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【背景】已知:lmnk,平行線lm、mn、nk之間的距離分別為d1,d2,d3,且d1d3=1,d2=2.我們把四個頂點分別在l,m,nk這四條平行線上的四邊形稱為“格線四邊形” .

【探究1】(1)如圖1,正方形ABCD為“格線四邊形”,BEl于點E,BE的反向延長線交直線k于點F.求正方形ABCD的邊長.

【探究2】(2)如圖2,菱形ABCD為“格線四邊形”且∠ADC=60°,△AEF是等邊三角形,AEk于點E,∠AFD=90°,直線DF分別交直線l,k于點G、點M.求證:ECDF

【拓展】(3)如圖3,lk,等邊△ABC的頂點A,B分別落在直線l,k上,ABk于點B,且∠ACD=90°,直線CD分別交直線l、k于點G、點M,點D、點E分別是線段GM、BM上的動點,且始終保持ADAE,DHl于點H.猜想:DH在什么范圍內(nèi),BCDE?并說明此時BCDE的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計算下列各題:(1)x·x4÷x2_______;(2)(ab)2_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在平面直角坐標(biāo)系中,點軸負(fù)半軸上一點,點軸正半軸上一點,,,其中,滿足關(guān)系式:.

(1)= ,= ,△的面積為 ;

(2)如圖2,若,點線段上一點,連接,延長于點,當(dāng)∠=∠時,求證:平分∠

(3)如圖3,若,點是點與點之間一動點,連接,始終平分∠,當(dāng)點在點與點之間運動時,的值是否變化?若不變,求出其值;若變化,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABC中,∠B=90°,AB=5cm,BC=7cm.點P從點A開始沿AB邊向點B1cm/s的速度移動,同時點Q從點B開始沿BC邊向點C2cm/s的速度移動.當(dāng)一個點到達(dá)終點時另一點也隨之停止運動,設(shè)運動時間為x秒,

(1)求幾秒后,PBQ的面積等于6cm2

(2)求幾秒后,PQ的長度等于5cm

(3)運動過程中,PQB的面積能否等于8cm2?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】圓桌面(桌面中間有一個直徑為0.4m的圓洞)正上方的燈泡(看作一個點)發(fā)出的光線照射平行于地面的桌面后,在地面上形成如圖所示的圓環(huán)形陰影.已知桌面直徑為1.2m,桌面離地面1m,若燈泡離地面3m,則地面圓環(huán)形陰影的面積是( )

A. 0.324πm2 B. 0.288πm2 C. 1.08πm2 D. 0.72πm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個多邊形的每一個外角都為36°,則這個多邊形是______邊形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,對于任意兩點A(x1,y1)B (x2,y2),規(guī)定運算:

(1)A⊕B=(x1+x2,y1+y2);

(2)A⊙B=x1x2+y1y2

(3)當(dāng)x1=x2且y1=y2時,A=B.

有下列四個命題:

①若有A(1,2),B(2,﹣1),則A⊕B=(3,1),A⊙B=0;

②若有A⊕B=B⊕C,則A=C;

③若有A⊙B=B⊙C,則A=C;

④(A⊕B)⊕C=A⊕(B⊕C)對任意點A、B、C均成立.

其中正確的命題為______(只填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】兩名同學(xué)在調(diào)查時使用下面兩種提問方式,你認(rèn)為哪一種更好些( )

A. 難道你不認(rèn)為科幻片比武打片更有意思嗎?

B. 你更喜歡哪一類電影 ——科幻片還是武打片?

查看答案和解析>>

同步練習(xí)冊答案