等邊△ABC邊長(zhǎng)為6,P為BC邊上一點(diǎn),∠MPN=60°,且PM、PN分別于邊

AB、AC交于點(diǎn)E、F.

(1)如圖1,當(dāng)點(diǎn)P為BC的三等分點(diǎn),且PE⊥AB時(shí),判斷△EPF的形狀;

(2)如圖2,若點(diǎn)P在BC邊上運(yùn)動(dòng),且保持PE⊥AB,設(shè)BP=x,四邊形AEPF面積的y,求y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;

(3)如圖3,若點(diǎn)P在BC邊上運(yùn)動(dòng),且∠MPN繞點(diǎn)P旋轉(zhuǎn),當(dāng)CF=AE=2時(shí),求PE的長(zhǎng).

 

(1)△EPF為等邊三角形.     --------------1分

(2)設(shè)BP=x,則CP=6-x.

由題意可 △BEP的面積為.

 

△CFP的面積為.

 

△ABC的面積為.

設(shè)四邊形AEPF的面積為y.

=.

 

自變量x的取值范圍為3<x<6. --------------4分

(3)可證△EBP∽△PCF.

.

 

設(shè)BP=x,

.

解得 .

∴ PE的長(zhǎng)為4或.   --------------7分

解析:略

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,等邊△ABC邊長(zhǎng)為4,E是邊BC上動(dòng)點(diǎn),EH⊥AC于H,過(guò)E作EF∥AC,交線(xiàn)段AB于點(diǎn)F,在線(xiàn)段AC上取點(diǎn)P,使PE=EB.設(shè)EC=x(0<x≤2).
(1)請(qǐng)直接寫(xiě)出圖中與線(xiàn)段EF相等的兩條線(xiàn)段(不再另外添加輔助線(xiàn));
(2)Q是線(xiàn)段AC上的動(dòng)點(diǎn),當(dāng)四邊形EFPQ是平行四邊形時(shí),求平行四邊形EFPQ的面積(用含x的代數(shù)式表示);
(3)當(dāng)(2)中的平行四邊形EFPQ面積最大值時(shí),以E為圓心,r為半徑作圓,根據(jù)⊙E與此時(shí)平行四邊形EFPQ四條邊交點(diǎn)的總個(gè)數(shù),求相應(yīng)的r的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

7、如圖,等邊△ABC邊長(zhǎng)為3cm,將△ABC沿AC向右平移1cm,得到△DEF,則四邊形ABEF的周長(zhǎng)(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、如圖,已知等邊△ABC邊長(zhǎng)為1,D是△ABC外一點(diǎn)且∠BDC=120°,BD=CD,∠MDN=60°.
求證:△AMN的周長(zhǎng)等于2.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,等邊△ABC邊長(zhǎng)為10cm,以AB為直徑的⊙O分別交CA、CB于D、E兩點(diǎn),則圖中陰影部分的面積(結(jié)果保留π)是
 
cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

等邊△ABC邊長(zhǎng)為6,P為BC邊上一點(diǎn),∠MPN=60°,且PM、PN分別交邊AB、AC于點(diǎn)E、F.
(1)如圖1,若點(diǎn)P在BC邊上運(yùn)動(dòng),且保持PE⊥AB,設(shè)BP=x,四邊形AEPF面積的y,求y與x的函數(shù)關(guān)系式,并寫(xiě)出自變量x的取值范圍;
(2)如圖2,若點(diǎn)P在BC邊上運(yùn)動(dòng),且∠MPN繞點(diǎn)P旋轉(zhuǎn),當(dāng)CF=AE=2時(shí),求PE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案