【題目】閱讀下列材料:
將一個(gè)多位自然數(shù)分解為個(gè)位與個(gè)位之前的數(shù),讓個(gè)位之前的數(shù)減去個(gè)位數(shù)的兩倍,若所得之差能被7整除,則原多位自然數(shù)一定能被7整除.也稱這個(gè)數(shù)為“要塞數(shù)”.例如:將數(shù)1078分解為8和107,107﹣8×2=91,因?yàn)?/span>91能被7整除,所以1078能被7整除,就稱1078為“要塞數(shù)”.
完成下列問題:
(1)若一個(gè)三位自然數(shù)是“要塞數(shù)”,且個(gè)位數(shù)字和百位數(shù)字都是7,則這個(gè)三位自然數(shù)位 ;
(2)若一個(gè)四位自然數(shù)M是“要塞數(shù)”,設(shè)M的個(gè)位數(shù)字為x,十位數(shù)字為y,且個(gè)位數(shù)字與百位數(shù)字的和為13,十位數(shù)字與千位數(shù)字的和也為13,記F(M)=|x﹣y|,求F(M)的最大值.
【答案】(1)727或797;(2)3.
【解析】
(1)設(shè)三位數(shù)的十位數(shù)是a(0≤a≤9),由這個(gè)三位數(shù)是“要塞數(shù)”,可得70+a-2×7=54+a能被7整除,即可求a;
(2)由已知這個(gè)四位數(shù)的千位數(shù)字是13-y,百位數(shù)字是13-x,且4≤x≤9,4≤y≤9,由已知可得100(13-y)+10(13-x)+y-2x=1430-99y-12x能被7整除,分別代入數(shù)驗(yàn)證可得x=5,y=5;x=6,y=7;x=7,y=9;x=9,y=6,即可求解.
解:(1)設(shè)三位數(shù)的十位數(shù)是a(0≤a≤9),
∵個(gè)位數(shù)字和百位數(shù)字都是7,
∴這個(gè)三位數(shù)是,
∵這個(gè)三位數(shù)是“要塞數(shù)”,
∴70+a﹣2×7=54+a能被7整除,
∴a=2或a=9,
∴這個(gè)三位數(shù)是727或797;
(2)由已知這個(gè)四位數(shù)的千位數(shù)字是13﹣y,百位數(shù)字是13﹣x,且4≤x≤9,4≤y≤9,
∵四位數(shù)是“要塞數(shù)”,
∴100(13﹣y)+10(13﹣x)+y﹣2x=1430﹣99y﹣12x能被7整除,
∴x=5,y=5;x=6,y=7;x=7,y=9;x=9,y=6;
∴F(M)=|x﹣y|的最大值是3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y1=mx2﹣nx﹣m+n(m>0).
(Ⅰ)求證:該函數(shù)圖象與x軸必有交點(diǎn);
(Ⅱ)若m﹣n=3,
(ⅰ)當(dāng)﹣m≤x<1時(shí),二次函數(shù)的最大值小于0,求m的取值范圍;
(ⅱ)點(diǎn)A(p,q)為函數(shù)y2=|mx2﹣nx﹣m+n|圖象上的動(dòng)點(diǎn),當(dāng)﹣4<p<﹣1時(shí),點(diǎn)A在直線y=﹣x+4的上方,求m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明參加某個(gè)智力競答節(jié)目,答對(duì)最后兩道單選題就順利通關(guān).第一道單選題有3個(gè)選項(xiàng),第二道單選題有4個(gè)選項(xiàng),這兩道題小明都不會(huì),不過小明還有一個(gè)“求助”沒有用(使用“求助”可以讓主持人去掉其中一題的一個(gè)錯(cuò)誤選項(xiàng)).
(1)如果小明第一題不使用“求助”,那么小明答對(duì)第一道題的概率是 .
(2)如果小明將“求助”留在第二題使用,請(qǐng)用樹狀圖或者列表來分析小明順利通關(guān)的概率.
(3)從概率的角度分析,你建議小明在第幾題使用“求助”.(直接寫出答案)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,為放置在水平桌面上的臺(tái)燈,底座的高為.長度均為的連桿,與始終在同一水平面上.
(1)旋轉(zhuǎn)連桿,,使成平角,,如圖2,求連桿端點(diǎn)離桌面的高度.
(2)將(1)中的連桿繞點(diǎn)逆時(shí)針旋轉(zhuǎn),使,如圖3,問此時(shí)連桿端點(diǎn)離桌面的高度是增加了還是減少?增加或減少了多少?(精確到,參考數(shù)據(jù):,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】北山水果市場是我區(qū)最大的水果批發(fā)市場,張老師想購買甲、乙、丙三種水果,如果購買甲2千克,乙1千克,丙4千克,共需付錢36元:如果購買甲4千克,乙2千克,丙2千克,共需付錢32元.今要購買甲4千克,乙2千克,丙5千克,則共應(yīng)付_____元.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知tan∠MON=2,矩形ABCD的邊AB在射線OM上,AD=2,AB=m,CF⊥ON,垂足為點(diǎn)F.
(1)如圖(1),作AE⊥ON,垂足為點(diǎn)E. 當(dāng)m=2時(shí),求線段EF的長度;
圖(1)
(2)如圖(2),聯(lián)結(jié)OC,當(dāng)m=2,且CD平分∠FCO時(shí),求∠COF的正弦值;
圖(2)
(3)如圖(3),當(dāng)△AFD與△CDF相似時(shí),求m的值.
圖(3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=ax2+bx+c的圖象與x軸交于A(2,0),B(﹣8,0)兩點(diǎn),與y軸交于點(diǎn)C(0,﹣8).
(1)求拋物線的解析式;
(2)點(diǎn)F是直線BC下方拋物線上的一點(diǎn),當(dāng)△BCF的面積最大時(shí),求出點(diǎn)F的坐標(biāo);
(3)在(2)的條件下,是否存在這樣的點(diǎn)Q(0,m),使得△BFQ為等腰三角形?如果有,請(qǐng)直接寫出點(diǎn)Q的坐標(biāo);如果沒有,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,E是正方形ABCD申CD邊上任意一點(diǎn).
(1)以點(diǎn)A為中心,把△ADE順時(shí)針旋轉(zhuǎn)90°,畫出旋轉(zhuǎn)后的圖形;
(2)在BC邊上畫一點(diǎn)F,使△CFE的周長等于正方形ABCD的周長的一半,請(qǐng)簡要說明你取該點(diǎn)的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某汽車專賣店經(jīng)銷某種型號(hào)的汽車.已知該型號(hào)汽車的進(jìn)價(jià)為萬元/輛,經(jīng)銷一段時(shí)間后發(fā)現(xiàn):當(dāng)該型號(hào)汽車售價(jià)定為萬元/輛時(shí),平均每周售出輛;售價(jià)每降低萬元,平均每周多售出輛.
(1)當(dāng)售價(jià)為萬元/輛時(shí),平均每周的銷售利潤為___________萬元;
(2)若該店計(jì)劃平均每周的銷售利潤是萬元,為了盡快減少庫存,求每輛汽車的售價(jià).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com