【題目】如圖,△ABC中,CD是AB邊上的高,AC=8,∠ACD=30°,tan∠ACB=,點(diǎn)P為CD上一動點(diǎn),當(dāng)BP+CP最小時,DP= .
【答案】5.
【解析】
試題分析:如圖,作PE⊥AC于E,BE′⊥AC于E′交CD于P′.
∵CD⊥AB,∠ACD=30°,∠PEC=90°,AC=8,
∴PE=PC,∠A=60°,∠ABE′=30°,AD=4,CD=4,
∴PB+PC=PB+PE,
∴當(dāng)BE′⊥AC時,PB+PE=BP′+P′E′=BE′最小,
∵tan∠ACB==,設(shè)BE′=5,CE′=3k,
∴AE′=8﹣3k,AB=16﹣6k,BD=16﹣6k﹣4=12﹣6k,
∴BC2=BD2+CD2=BE′2+CE′2,
∴(12﹣6k)2+48=9k2+75k2,
整理得k2+3k﹣4=0,
∴k=1或﹣4(舍棄),
∴BE′=5,
∴PB+PC的最小值為5.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)軸上有A,B,C三點(diǎn),分別代表﹣30,﹣10,10,兩只電子螞蟻甲,乙分別從A,C兩點(diǎn)同時相向而行,甲的速度為4個單位/秒,乙的速度為6個單位/秒.
(1)甲,乙在數(shù)軸上的哪個點(diǎn)相遇?
(2)多少秒后,甲到A,B,C的距離和為48個單位?
(3)在甲到A,B,C的距離和為48個單位時,若甲調(diào)頭并保持速度不變,則甲,乙還能在數(shù)軸上相遇嗎?若能,求出相遇點(diǎn);若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】體育課上全班男生進(jìn)行了百米測試,達(dá)標(biāo)成績?yōu)?4秒,下面是第一小組8名男生的成績記錄,其中“+”表示成績大于14秒,“﹣”表示成績小于14秒
﹣1 | +0.8 | 0 | ﹣1.2 | ﹣0.1 | 0 | +0.5 | ﹣0.6 |
(1)求這個小組的男生達(dá)標(biāo)率是多少?
(2)求這個小組8名男生的平均成績是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,原點(diǎn)為O,點(diǎn)A(0,3),B(2,3),C(2,-3),D(0,-3).點(diǎn)P,Q是長方形ABCD邊上的兩個動點(diǎn),BC交x軸于點(diǎn)M.點(diǎn)P從點(diǎn)O出發(fā)以每秒1個單位長度沿O→A→B→M的路線做勻速運(yùn)動,同時點(diǎn)Q也從點(diǎn)O出發(fā)以每秒2個單位長度沿O→D→C→M的路線做勻速運(yùn)動.當(dāng)點(diǎn)Q運(yùn)動到點(diǎn)M時,兩動點(diǎn)均停止運(yùn)動.設(shè)運(yùn)動的時間為t秒,四邊形OPMQ的面積為S.
(1)當(dāng)t=2時,求S的值;
(2)若S<5時,求t的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的一元二次方程﹣2kx++2=2(1﹣x)有兩個實數(shù)根,,
(1)求實數(shù)k的取值范圍;
(2)若方程的兩實根,滿足||=﹣1,求k的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com