在平面直角坐標(biāo)系中,反比例函數(shù)與二次函數(shù)y=k(x2+x-1)的圖象交于點A(1,k)和點B(-1,-k).
(1)當(dāng)k=-2時,求反比例函數(shù)的解析式;
(2)要使反比例函數(shù)與二次函數(shù)都是y隨著x的增大而增大,求k應(yīng)滿足的條件以及x的取值范圍.
(3)設(shè)二次函數(shù)的圖象的頂點為Q,當(dāng)△ABQ是以AB為斜邊的直角三角形時,求k的值.
(1)y=- (2)k<0 x≤- (3)k=±
解析解:(1)因為k=-2,所以A(1,-2),
設(shè)反比例函數(shù)為y=,因為點A在函數(shù)的圖象上,所以-2=,
解得k1=-2,
反比例函數(shù)解析式為y=-.
(2)由y=k(x2+x-1)=k-k,得拋物線對稱軸為直線x=-,
當(dāng)k>0時,反比例函數(shù)不存在y隨著x的增大而增大的取值范圍,所以k<0,
此時,當(dāng)x<0或x>0時,反比例函數(shù)值y隨著x的增大而增大;
當(dāng)x≤-時,二次函數(shù)值y隨著x的增大而增大,所以自變量x的取值范圍是x≤-.
(3)由題(2)得點Q的坐標(biāo)為,
因為AQ⊥BQ,點O是AB的中點,
所以O(shè)Q=AB=OA,
得+k2=12+k2,解得k=±.
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,二次函數(shù)的圖象與軸交于、兩點,與軸交于點,已知點(-1,0),點C(0,-2).
(1)求拋物線的函數(shù)解析式;
(2)試探究的外接圓的圓心位置,并求出圓心坐標(biāo);
(3)此拋物線上是否存在點P,使得以P、A、C、B為頂點的四邊形為梯形.若存在,請寫出所有符合條件的P點坐標(biāo);若不存在,請說明理由;
(4)若點是線段下方的拋物線上的一個動點,求面積的最大值以及此時點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,直線y=與x軸交于點A,與y軸交于點C,以AC為直徑作⊙M,點是劣弧AO上一動點(點與不重合).拋物線y=-經(jīng)過點A、C,與x軸交于另一點B,
(1)求拋物線的解析式及點B的坐標(biāo);
(2)在拋物線的對稱軸上是否存在一點P,是︱PA—PC︱的值最大;若存在,求出點P的坐標(biāo);若不存在,請說明理由。
(3)連交于點,延長至,使,試探究當(dāng)點運動到何處時,直線與⊙M相切,并請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某商家獨家銷售具有地方特色的某種商品,每件進價為40元.經(jīng)過市場調(diào)查,一周的銷售量y件與銷售單價x(x≥50)元/件的關(guān)系如下表:
銷售單價x (元/件) | … | 55 | 60 | 70 | 75 | … |
一周的銷售量y (件) | … | 450 | 400 | 300 | 250 | … |
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,矩形ABCD的兩邊長AB=18 cm,AD=4 cm,點P、Q分別從A、B同時出發(fā),P在邊AB上沿AB方向以每秒2 cm的速度勻速運動,Q在邊BC上沿BC方向以每秒1 cm的速度勻速運動.設(shè)運動時間為x秒,△PBQ的面積為y(cm2).
(1)求y關(guān)于x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)求△PBQ的面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,拋物線的解析式是y=x2+1,點C的坐標(biāo)為(-4,0),平行四邊形OABC的頂點A,B在拋物線上,AB與y軸交于點M,已知點Q(x,y)在拋物線上,點P(t,0)在x軸上.
(1)寫出點M的坐標(biāo);
(2)當(dāng)四邊形CMQP是以MQ,PC為腰的梯形時;
①求t關(guān)于x的函數(shù)解析式和自變量x的取值范圍;
②當(dāng)梯形CMQP的兩底的長度之比為1∶2時,求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
某商場購進一批單價為50元的商品,規(guī)定銷售時單價不低于進價,每件的利潤不超過40%.其中銷售量y(件)與所售單價x(元)的關(guān)系可以近似的看作如圖所表示的一次函數(shù).
(1)求y與x之間的函數(shù)關(guān)系式,并求出x的取值范圍;
(2)設(shè)該公司獲得的總利潤(總利潤=總銷售額-總成本)為w元,求w與x之間的函數(shù)關(guān)系式.當(dāng)銷售單價為何值時,所獲利潤最大?最大利潤是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
如圖,在平面直角坐標(biāo)系xOy中,AB在x軸上,以AB為直徑的半⊙O’與y軸正半軸交于點C,連接BC,AC.CD是半⊙O’的切線,AD⊥CD于點D.
(1)求證:∠CAD =∠CAB;
(2)已知拋物線過A、B、C三點,AB=10,tan∠CAD=.
① 求拋物線的解析式;
② 判斷拋物線的頂點E是否在直線CD上,并說明理由;
③ 在拋物線上是否存在一點P,使四邊形PBCA是直角梯形.若存在,直接寫出點P的坐標(biāo)(不寫求解過程);若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com