【題目】已知拋物線y=(x-m)2-(x-m),其中m是常數(shù).
(1)求證:不論m為何值,該拋物線與x軸一定有兩個公共點;
(2)若該拋物線的對稱軸為直線x=.
①求該拋物線的函數(shù)解析式;
②把該拋物線沿y軸向上平移多少個單位長度后,得到的拋物線與x軸只有一個公共點.
【答案】(1)證明見解析(2)①y=x2-5x+6②該拋物線沿y軸向上平移個單位長度后,得到的拋物線與x軸只有一個公共點
【解析】試題分析:(1)先把拋物線解析式化為一般式,再計算△的值,得到△=1>0,于是根據(jù)△=b2-4ac決定拋物線與x軸的交點個數(shù)即可判斷不論m為何值,該拋物線與x軸一定有兩個公共點;
(2)①根據(jù)對稱軸方程得到=-,然后解出m的值即可得到拋物線解析式;
②根據(jù)拋物線的平移規(guī)律,設(shè)拋物線沿y軸向上平移k個單位長度后,得到的拋物線與x軸只有一個公共點,則平移后拋物線解析式為y=x2-5x+6+k,再利用拋物線與x軸的只有一個交點得到△=52-4(6+k)=0,然后解關(guān)于k的方程即可.
試題解析:(1)y=(x-m)2-(x-m)=x2-(2m+1)x+m2+m,
∵△=(2m+1)2-4(m2+m)=1>0,
∴不論m為何值,該拋物線與x軸一定有兩個公共點;
(2)①∵x=-,
∴m=2,
∴拋物線解析式為y=x2-5x+6;
②設(shè)拋物線沿y軸向上平移k個單位長度后,得到的拋物線與x軸只有一個公共點,則平移后拋物線解析式為y=x2-5x+6+k,
∵拋物線y=x2-5x+6+k與x軸只有一個公共點,
∴△=52-4(6+k)=0,
∴k=,
即把該拋物線沿y軸向上平移個單位長度后,得到的拋物線與x軸只有一個公共點.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,已知A(-1,3),B(-1,-1),下列四個點中,在線段AB的垂直平分線上的是( )
A. (0,2) B. (-3,1) C. (1,2) D. (1,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一只不透明的袋子中裝有紅球2個和白球2個,這些球除顏色外其余都相同,小明從袋子中任意摸出一球,記下顏色后不放回,若小明再從剩余的球中任取一球,請你用列表法或樹狀圖的方法,求小明兩次都摸出紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x的方程x2+(m+2)x+2m-1=0.
(1)求證方程有兩個不相等的實數(shù)根.
(2)當m為何值時,方程的兩根互為相反數(shù)?并求出此時方程的解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,點O在AC上,以OA為半徑的⊙O交AB于點D,BD的垂直平分線交BC于點E,交BD于點F,連接DE.
(1)判斷直線DE與⊙O的位置關(guān)系,并說明理由;
(2)若AC=6,BC=8,OA=2,求線段DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AD⊥BC,CE⊥AB,垂足分別為D、E,AD、CE交于點H,請你添加一個適當?shù)臈l件:_____________,使△AEH≌△CEB.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(﹣8,3),B(﹣4,0),C(﹣4,3),∠ABC=α°.拋物線y=x2+bx+c經(jīng)過點C,且對稱軸為x=﹣,并與y軸交于點G.
(1)求拋物線的解析式及點G的坐標;
(2)將Rt△ABC沿x軸向右平移m個單位,使B點移到點E,然后將三角形繞點E順時針旋轉(zhuǎn)α°得到△DEF.若點F恰好落在拋物線上.①求m的值;
②連接CG交x軸于點H,連接FG,過B作BP∥FG,交CG于點P,求證:PH=GH.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com