【題目】如圖,某住宅小區(qū)在施工過(guò)程中留下了一塊空地(圖中的四邊形ABCD),經(jīng)測(cè)量,在四邊形ABCD中,AB=3 m,BC=4 m,CD=12 m,DA=13 m,∠B=90°.小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米30元,試問(wèn)鋪滿(mǎn)這塊空地共需花費(fèi)多少元?
【答案】1080元.
【解析】
連接AC,先根據(jù)勾股定理求出AC的長(zhǎng),然后利用勾股定理的逆定理證明△ACD為直角三角形.從而用求和的方法求面積,進(jìn)而可得出需要的費(fèi)用.
解:連接AC,
則由勾股定理得AC==5m,
∴AC2+DC2= ,
又∵AD2= =169,
∴AC2+DC2=AD2,
∴∠ACD=90°.
這塊草坪的面積=SRt△ABC+SRt△ACD= .
故需要的費(fèi)用為36×30=1080元.
答:鋪滿(mǎn)這塊空地共需花費(fèi)1080元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點(diǎn)D,E分別在邊AB,AC上,AD=AE,連接DC,點(diǎn)M,P,N分別為DE,DC,BC的中點(diǎn).
(1)觀察猜想
圖1中,線(xiàn)段PM與PN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;
(2)探究證明
把△ADE繞點(diǎn)A逆時(shí)針?lè)较蛐D(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說(shuō)明理由;
(3)拓展延伸
把△ADE繞點(diǎn)A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請(qǐng)直接寫(xiě)出△PMN面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】隨著科技進(jìn)步,無(wú)人機(jī)的應(yīng)用越來(lái)越廣,如圖1,在某一時(shí)刻,無(wú)人機(jī)上的探測(cè)器顯示,從無(wú)人機(jī)A處看一棟樓頂部B點(diǎn)的仰角和看與頂部B在同一鉛垂線(xiàn)上高樓的底部C的俯角.
(1)如果上述仰角與俯角分別為30°與60°,且該樓的高度為30米,求該時(shí)刻無(wú)人機(jī)的豎直高度CD;
(2)如圖2,如果上述仰角與俯角分別為α與β,且該樓的高度為m米.求用α、β、m表示該時(shí)刻無(wú)人機(jī)的豎直高度CD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】新知學(xué)習(xí),若一條線(xiàn)段把一個(gè)平面圖形分成面積相等的兩部分,我們把這條段線(xiàn)做該平面圖形的二分線(xiàn)解決問(wèn)題:
(1)①三角形的中線(xiàn)、高線(xiàn)、角平分線(xiàn)中,一定是三角形的二分線(xiàn)的是_______
②如圖1,已知△ABC中,AD是BC邊上的中線(xiàn),點(diǎn)E,F分別在AB,DC上,連接EF,與AD交于點(diǎn)G,若則EF_____(填“是”或“不是”)△ABC的一條二分線(xiàn).并說(shuō)明理由.
(2)如圖2,四邊形ABCD中,CD平行于AB,點(diǎn)G是AD的中點(diǎn),射線(xiàn)CG交射線(xiàn)BA于點(diǎn)E,取EB的中點(diǎn)F,連接CF.求證:CF是四邊形ABCD的二分線(xiàn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,有一個(gè)直角三角形紙片,兩直角邊AC=6cm,BC=8cm,現(xiàn)將直角邊AC沿直線(xiàn)AD折疊,使它落在斜邊AB上,且與AE重合,求BD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在菱形紙片ABCD中, ,將菱形紙片翻折,使點(diǎn)A落在CD的中點(diǎn)E處,折痕為FG,點(diǎn)分別在邊上,則的值為______ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,甲、乙兩車(chē)分別從相距480km的A、B兩地相向而行,乙車(chē)比甲車(chē)先出發(fā)1小時(shí),并以各自的速度勻速行駛,甲車(chē)到達(dá)C地后因有事按原路原速返回A地.乙車(chē)從B地直達(dá)A地,兩車(chē)同時(shí)到達(dá)A地.甲、乙兩車(chē)距各自出發(fā)地的路程y(千米)與甲車(chē)出發(fā)所用的時(shí)間x(小時(shí))的關(guān)系如圖2,結(jié)合圖象信息解答下列問(wèn)題:
(1)乙車(chē)的速度是 千米/時(shí),乙車(chē)行駛的時(shí)間t= 小時(shí);
(2)求甲車(chē)從C地按原路原速返回A地的過(guò)程中,甲車(chē)距它出發(fā)地的路程y與它出發(fā)的時(shí)間x的函數(shù)關(guān)系式;
(3)直接寫(xiě)出甲車(chē)出發(fā)多長(zhǎng)時(shí)間兩車(chē)相距80千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知△ABC中,AB=6,AC=8,BC=11,任作一條直線(xiàn)將△ABC分成兩個(gè)三角形,若其中有一個(gè)三角形是等腰三角形,則這樣的直線(xiàn)最多有( )
A.5條B.6條C.7條D.8條
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是邊長(zhǎng)為6cm的等邊三角形,點(diǎn)D從B點(diǎn)出發(fā)沿B→A方向在線(xiàn)段BA上以a cm/s速度運(yùn)動(dòng),與此同時(shí),點(diǎn)E從線(xiàn)段BC的某個(gè)端點(diǎn)出發(fā),以b cm/s速度在線(xiàn)段BC上運(yùn)動(dòng),當(dāng)D到達(dá)A點(diǎn)后,D、E運(yùn)動(dòng)停止,運(yùn)動(dòng)時(shí)間為t(秒).
(1)如圖1,若a=b=1,點(diǎn)E從C出發(fā)沿C→B方向運(yùn)動(dòng),連AE、CD,AE、CD交于F,連BF.當(dāng)0<t<6時(shí):
①求∠AFC的度數(shù);
②求的值;
(2)如圖2,若a=1,b=2,點(diǎn)E從B點(diǎn)出發(fā)沿B→C方向運(yùn)動(dòng),E點(diǎn)到達(dá)C點(diǎn)后再沿C→B方向運(yùn)動(dòng).當(dāng)t≥3時(shí),連DE,以DE為邊作等邊△DEM,使M、B在DE兩側(cè),求M點(diǎn)所經(jīng)歷的路徑長(zhǎng).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com