【題目】已知,如圖在△ABC中,AD、BE分別是BC,AC邊上的高,AD、BE交于H,DA=DB,BH=AC,點(diǎn)F為BH的中點(diǎn),∠ABE=15°.
(1)求證:△ADC≌△BDH
(2)求證:DC=DF
【答案】(1)見解析;(2)見解析.
【解析】
(1)由全等三角形的判定定理HL證得結(jié)論即可;
(2)結(jié)合(1)中全等三角形的對應(yīng)邊相等得到DC=DH,然后根據(jù)含30度角的直角三角形的性質(zhì)以及直角三角形斜邊中線的性質(zhì)證明即可;
證明:(1)∵AD⊥BC,BE⊥AC,
∴∠ADC=∠BDH=90°,
在Rt△ADC和Rt△BDH中,
∴△ADC≌△BDH(HL).
(2)∵DB=DA,
∴∠DBA=∠DAB=45°,
∵∠ABE=15°,
∴∠DBH=30°,
∴DH=BH,
∵BF=FH,
∴DF=BH,
∴DF=DH,
∵△ADC≌△BDH;
∴CD=DH,
∴DC=DF.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰直角三角形ABC,AB=AC,∠BAC=∠BDC=90°,
(1)若∠DBA=20°,則∠ACD=______°;
(2)連接AD,則∠ADB=______°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖是我們生活中經(jīng)常接觸的小刀,刀片的外殼是四邊形,而且刀片外殼與刀片鉚合部分都是直角,刀片的上、下是平行的,轉(zhuǎn)動刀片時會形成∠1和∠2,則∠1+∠2的度數(shù)為( )
A. 80° B. 70° C. 90° D. 100°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖①,AD是△ABC的中線.△ABD與△ACD的面積有怎樣的數(shù)量關(guān)系?為什么?
(2)若三角形的面積記為S,例如:△ABC的面積記為S△ABC.如圖②,已知S△ABC=1.△ABC的中線AD、CE相交于點(diǎn)O,求四邊形BDOE的面積.
小華利用(1)的結(jié)論,解決了上述問題,解法如下:
連接BO,設(shè)S△BEO=x,S△BDO=y,由(1)結(jié)論可得:S△BCE=S△BAD=S△ABC=,S△BCO=2S△BDO=2y,S△BAO=2S△BEO=2x.則有即所以x+y=.即四邊形BDOE面積為.
請仿照上面的方法,解決下列問題:
①如圖③,已知S△ABC=1.D、E是BC邊上的三等分點(diǎn),F、G是AB邊上的三等分點(diǎn),AD、CF交于點(diǎn)O,求四邊形BDOF的面積.
②如圖④,已知S△ABC=1.D、E、F是BC邊上的四等分點(diǎn),G、H、I是AB邊上的四等分點(diǎn),AD、CG交于點(diǎn)O,則四邊形BDOG的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB∥CD,∠BED=61°,∠ABE的平分線與∠CDE的平分線交于點(diǎn)F,則∠DFB=( )
A. 149° B. 149.5° C. 150° D. 150.5°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2a,E為BC邊的中點(diǎn), 的圓心分別在邊AB、CD上,這兩段圓弧在正方形內(nèi)交于點(diǎn)F,則E、F間的距離為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:直線l:y=2kx-4k+3(k≠0)恒過某一定點(diǎn)P.
(1)求該定點(diǎn)P的坐標(biāo);
(2)已知點(diǎn)A、B坐標(biāo)分別為(0,1)、(2,1),若直線l與線段AB相交,求k的取值范圍;
(3)在0≤x≤2范圍內(nèi),任取3個自變量x1,x2、x3,它們對應(yīng)的函數(shù)值分別為y1、y2、y3,若以y1、y2、y3為長度的3條線段能圍成三角形,求k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A,B,C在一條直線上,△ABD,△BCE均為等邊三角形,連接AE和CD,AE分別交CD,BD于點(diǎn)M,P,CD交BE于點(diǎn)Q,連接PQ,BM,下面結(jié)論:
①△ABE≌△DBC;②∠DMA=60°;③△BPQ為等邊三角形;④MB平分∠AMC,
其中結(jié)論正確的有( )
A. 1個 B. 2個 C. 3個 D. 4個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB邊的垂直平分線l1交BC于點(diǎn)D,AC邊的垂直平分線l2交BC于點(diǎn)E,l1與l2相交于點(diǎn)O,連接AD,AE,△ADE的周長為12cm.
(1)求BC的長;
(2)分別連接OA,OB,OC,若△OBC的周長為26cm,求OA的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com