(2012•孝感)如圖,在菱形ABCD中,∠A=60°,E、F分別是AB,AD的中點(diǎn),DE、BF相交于點(diǎn)G,連接BD,CG.有下列結(jié)論:
①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S△ABD=
3
4
AB2
其中正確的結(jié)論有(  )
分析:先判斷出△ABD、BDC是等邊三角形,然后根據(jù)等邊三角形的三心(重心、內(nèi)心、垂心)合一的性質(zhì),結(jié)合菱形對(duì)角線(xiàn)平分一組對(duì)角,三角形的判定定理可分別進(jìn)行各項(xiàng)的判斷.
解答:解:①由菱形的性質(zhì)可得△ABD、BDC是等邊三角形,∠DGB=∠GBE+∠GEB=30°+90°=120°,故①正確;
②∵∠DCG=∠BCG=30°,DE⊥AB,∴可得DG=
1
2
CG(30°角所對(duì)直角邊等于斜邊一半)、BG=
1
2
CG,故可得出BG+DG=CG,即②也正確;
③首先可得對(duì)應(yīng)邊BG≠FD,因?yàn)锽G=DG,DG>FD,故可得△BDF不全等△CGB,即③錯(cuò)誤;
④S△ABD=
1
2
AB•DE=
1
2
AB•
3
BE=
1
2
AB•
3
2
AB=
3
4
AB2,即④正確.
綜上可得①②④正確,共3個(gè).
故選C.
點(diǎn)評(píng):此題考查了菱形的性質(zhì)、全等三角形的判定與性質(zhì)及等邊三角形的判定與性質(zhì),綜合的知識(shí)點(diǎn)較多,注意各知識(shí)點(diǎn)的融會(huì)貫通,難度一般.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•孝感)如圖,AB是⊙O的直徑,AM,BN分別切⊙O于點(diǎn)A,B,CD交AM,BN于點(diǎn)D,C,DO平分∠ADC.
(1)求證:CD是⊙O的切線(xiàn);
(2)若AD=4,BC=9,求⊙O的半徑R.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•孝感)如圖,△ABC在平面直角坐標(biāo)系中第二象限內(nèi),頂點(diǎn)A的坐標(biāo)是(-2,3),先把△ABC向右平移4個(gè)單位得到△A1B1C1,再作△A1B1C1關(guān)于x軸對(duì)稱(chēng)圖形△A2B2C2,則頂點(diǎn)A2的坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•孝感)如圖,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于點(diǎn)D,若AC=2,則AD的長(zhǎng)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•孝感)如圖,拋物線(xiàn)y=ax2+bx+c(a,b,c是常數(shù),a≠0)與x軸交于A,B兩點(diǎn),與y軸交于點(diǎn)C,三個(gè)交點(diǎn)的坐標(biāo)分別為A(-1,0),B(3,0),C(0,3).
(1)求拋物線(xiàn)的解析式及頂點(diǎn)D的坐標(biāo);
(2)若P為線(xiàn)段BD上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥x軸于點(diǎn)M,求四邊形PMAC面積的最大值和此時(shí)P點(diǎn)的坐標(biāo);
(3)若P為拋物線(xiàn)在第一象限上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PQ∥AC交x軸于點(diǎn)Q.當(dāng)點(diǎn)P的坐標(biāo)為
(2,3)
(2,3)
時(shí),四邊形PQAC是平行四邊形;當(dāng)點(diǎn)P的坐標(biāo)為
11
4
,
15
16
11
4
,
15
16
時(shí),四邊形PQAC是等腰梯形(直接寫(xiě)出結(jié)果,不寫(xiě)求解過(guò)程).

查看答案和解析>>

同步練習(xí)冊(cè)答案