【題目】如圖,已知AD是三角形紙片ABC的高,將紙片沿直線EF折疊,使點(diǎn)A與點(diǎn)D重合,給出下列判斷: ①EF是△ABC的中位線;
②△DEF的周長等于△ABC周長的一半;
③若四邊形AEDF是菱形,則AB=AC;
④若∠BAC是直角,則四邊形AEDF是矩形,
其中正確的是( )
A.①②③
B.①②④
C.②④
D.①③④
【答案】A
【解析】解:∵AD是△ABC的高, ∴AD⊥BC,
∴∠ADC=90°,
根據(jù)折疊可得:EF是AD的垂直平分線,
∴AO=DO= AD,AD⊥EF,
∴∠AOF=90°,
∴∠AOF=∠ADC=90°,
∴EF∥BC,
∴△AEF∽△ABC,
∴ = = = ,
∴EF是△ABC的中位線,
故①正確;
∵EF是△ABC的中位線,
∴△AEF的周長是△ABC的一半,
根據(jù)折疊可得△AEF≌△DEF,
∴△DEF的周長等于△ABC周長的一半,
故②正確;
∵EF是△ABC的中位線,
∴AE= AB,AF= AC,
若四邊形AEDF是菱形,
則AE=AF,
∴AB=AC,
故③正確;
根據(jù)折疊只能證明∠BAC=∠EDF=90°,
不能確定∠AED和∠AFD的度數(shù),故④錯(cuò)誤;
故選:A.
【考點(diǎn)精析】本題主要考查了三角形中位線定理和菱形的性質(zhì)的相關(guān)知識(shí)點(diǎn),需要掌握連接三角形兩邊中點(diǎn)的線段叫做三角形的中位線;三角形中位線定理:三角形的中位線平行于三角形的第三邊,且等于第三邊的一半;菱形的四條邊都相等;菱形的對角線互相垂直,并且每一條對角線平分一組對角;菱形被兩條對角線分成四個(gè)全等的直角三角形;菱形的面積等于兩條對角線長的積的一半才能正確解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)數(shù)的平方是16,則這個(gè)數(shù)的3次方是( )
A.48
B.64
C.﹣64
D.64或﹣64
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,已知E為BC的中點(diǎn),連接AE并延長交DC的延長線于點(diǎn)F,連接BF.
(1)求證:AB=CF;
(2)當(dāng)BC與AF滿足什么數(shù)量關(guān)系時(shí),四邊形ABFC是矩形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AB是⊙O的直徑,C是⊙O上一點(diǎn),OD⊥BC于點(diǎn)D,過點(diǎn)C作⊙O的切線,交OD的延長線于點(diǎn)E,連結(jié)BE.
(1)求證:BE與⊙O相切;
(2)連結(jié)AD并延長交BE于點(diǎn)F,若OB=6,且sin∠ABC=,求BF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知∠AOB,OA=OB,點(diǎn)E在OB上,且四邊形AEBF是平行四邊形,請你只用無刻度的直尺在圖中畫出∠AOB的平分線(保留畫圖痕跡,不寫畫法),并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算(a2)3-5a3·a3的結(jié)果是( )
A. a5-5a6 B. a6-5a9 C. -4a6 D. 4a6
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一個(gè)長方形繞一點(diǎn)旋轉(zhuǎn)一周所形成的圖形可能是( )
A. 圓 B. 長方形 C. 圓環(huán) D. 正方形
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格(每個(gè)小正方形邊長為1)中,每個(gè)小正方形的頂點(diǎn)稱為格點(diǎn),以格點(diǎn)為頂點(diǎn)的三角形叫做個(gè)點(diǎn)三角形.
(1)在圖中的正方形網(wǎng)格中畫出格點(diǎn)△ABC,使AB=3,AC=1(直接畫出圖形,不寫過程);
(2)把你所畫的△ABC先向右平移3個(gè)單位,再向上平移2個(gè)單位,畫出平移后的△A1B1C1;
(3)填空BCB1C1 , ∠BAC∠B1A1C1(填“>”“=”“<”).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com