【題目】某高速鐵路位于某省南部,是國家“八縱八橫”高速鐵路網(wǎng)的重要連接通道,也是某省“三橫五縱”高速鐵路網(wǎng)的重要組成部分.東起日照,向西貫穿臨沂、曲阜、濟(jì)寧、菏澤,與鄭徐客運(yùn)專線蘭考南站接軌.工程有一段在一條河邊,且剛好為東西走向.B處是一個高鐵維護(hù)站,如圖①,現(xiàn)在想過B處在河上修一座橋,需要知道河寬,一測量員在河對岸的A處測得B在它的東北方向,測量員從A點(diǎn)開始沿岸邊向正東方向前進(jìn)300米到達(dá)點(diǎn)C處,測得BC的北偏西30度方向上.

1)求所測之處河的寬度;(結(jié)果保留的十分位)

2)除(1)的測量方案外,請你再設(shè)計一種測量河寬的方案,并在圖②中畫出圖形.

【答案】1)所測之處江的寬度為190.5m;(2)見解析.

【解析】

解:(1)過點(diǎn)BBFACF,根據(jù)題意得到∠EAB45°,∠GCB30°,AC300m,求得∠FBA45°,∠CBF30°,得到BFAF,解直角三角形即可得到結(jié)論;

2)構(gòu)造相似三角形,根據(jù)相似三角形的性質(zhì)得到方程即可得到結(jié)論..

1)過點(diǎn)BBFACF

由題意得:∠EAB45°,∠GCB30°,AC300m

∴∠FBA45°,∠CBF30°,

BFAF,

FC300AF300BFm),

RtBFC中,tanCBF,

tan30°=,

,

解得:BF1503)≈190.5m),

答:所測之處江的寬度為190.5m;

2)①在河岸取點(diǎn)A,使B垂直于河岸,延長BAC,測得AC做記錄,

②從C沿平行于河岸的方向走到D,測得CD,做記錄,

B0與河岸交于E,測AE,做記錄.根據(jù)△BAE~△BCD,

得到比例線段,從而求出河寬AB

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)C為⊙O外一點(diǎn),連接OC交⊙O于點(diǎn)D,連接BD并延長交線段AC于點(diǎn)E,∠CDE=∠CAD

1)求證:CD2ACEC;

2)判斷AC與⊙O的位置關(guān)系,并證明你的結(jié)論;

3)若AEEC,求tanB的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙兩動點(diǎn)分別從正方形ABCD的頂點(diǎn)A,C同時沿正方形的邊開始移動,甲按順時針方向環(huán)形,乙按逆時針方向環(huán)行,若乙的速度是甲的3倍,那么它們第一次相遇在AD邊上,請問它們第2015次相遇在(  )邊上.

A. ADB. DCC. BCD. AB

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某文化商店計劃同時購進(jìn)A、B兩種儀器,若購進(jìn)A種儀器2臺和B種儀器3臺,共需要資金1700元;若購進(jìn)A種儀器3臺,B種儀器1臺,共需要資金1500元.

1)求AB兩種型號的儀器每臺進(jìn)價各是多少元?

2)已知A種儀器的售價為760元/臺,B種儀器的售價為540元/臺.該經(jīng)銷商決定在成本不超過30000元的前提下購進(jìn)A、B兩種儀器,若B種儀器是A種儀器的3倍還多10臺,那么要使總利潤不少于21600元,該經(jīng)銷商有哪幾種進(jìn)貨方案?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】啟明公司生產(chǎn)某種產(chǎn)品,每件成本是3,售價是4,年銷售量為10萬件.為了獲得更好的效益,公司準(zhǔn)備拿出一定的資金做廣告,根據(jù)經(jīng)驗(yàn),每年投入的廣告費(fèi)是x( 萬元),產(chǎn)品的年銷售量是原銷售量的y,y=. 如果把利潤看作是銷售總額減去成本和廣告費(fèi):

(1)試寫出年利潤s(萬元)與廣告費(fèi)x(萬元)的函數(shù)關(guān)系式,并計算廣告費(fèi)是多少萬元時,公司獲得的年利潤最大?最大年利潤是多少萬元?

(2)(1)中的最大利潤留出3萬元做廣告,其余的資金投資新項目,現(xiàn)有6個項目可供選擇,各項目每股投資金額和預(yù)計年收益如下表:

項目

A

B

C

D

E

F

每股(萬元)

5

2

6

4

6

8

收益(萬元)

0.55

0.4

0.6

0.5

0.9

1

如果每個項目只能投一股,且要求所有投資項目的收益總額不得低于1.6萬元, 問有幾種符合要求的方式?寫出每種投資方式所選的項目.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2017四川省雅安市)如圖,四邊形ABCD中,AB=4,BC=6,ABBCBCCD,EAD的中點(diǎn),F為線段BE上的點(diǎn),且FE=BE,則點(diǎn)F到邊CD的距離是 ( 。

A. 3 B. C. 4 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】ABC中,∠ABC90°

1)如圖1,分別過AC兩點(diǎn)作經(jīng)過點(diǎn)B的直線的垂線,垂足分別為點(diǎn)M,N,求證:ABM∽△BCN;

2)如圖2,PBC邊上一點(diǎn),∠BAP=∠C,tanPACBP2cm,求CP的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yax2x4的對稱軸是直線x3,且與x軸相交于AB兩點(diǎn)(B點(diǎn)在A點(diǎn)右側(cè)),與y軸交于C點(diǎn).

(1)求拋物線的解析式;

(2)A,B兩點(diǎn)的坐標(biāo);

(3)M是拋物線上B,C兩點(diǎn)之間的一個動點(diǎn)(不與BC重合),過點(diǎn)My軸的平行線,交直線BC于點(diǎn)N,當(dāng)MN3時,求M點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB90°,以直角邊BC為直徑作O、交AB于點(diǎn)D,EAC的中點(diǎn),連接DE

(1)求證:DEO的切線;

(2)已知BC4.填空.

當(dāng)DE   時,四邊形DOCE為正方形;

當(dāng)DE   時,△BOD為等邊三角形.

查看答案和解析>>

同步練習(xí)冊答案