【題目】如圖,AB是⊙O的直徑,C是⊙O是一點,過點B作⊙O的切線,與AC延長線交于點D,連接BC,OE//BC交⊙O于點E,連接BE交AC于點H。(1)求證:BE平分∠ABC;(2)連接OD,若BH=BD=2,求OD的長.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,Rt△ABC的直角邊BC在x軸正半軸上,斜邊AC邊上的中線BD反向延長線交y軸負半軸于E,雙曲線y=(x>0)的圖象經(jīng)過點A,若△BEC的面積為6,則k等于( 。
A. 3 B. 6 C. 12 D. 24
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知四邊形ABCD內(nèi)接于⊙O,連結BD,∠BAD=105°,∠DBC=75°.若⊙O的半徑為3,則弧BC的長是( )
A. B. π C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在邊長為1的正方形網(wǎng)格中,△ABC的頂點均在格點上,點A、B的坐標分別是A(4,3)、B(4,1),把△ABC繞點C逆時針旋轉90°后得到△A1B1C.
(1)畫出△A1B1C,直接寫出點A1、B1的坐標;
(2)求在旋轉過程中,△ABC所掃過的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角邊分別為3和4的直角三角形中,每多作一條斜邊上的高就增加一個三角形的內(nèi)切圓,以此類推,依此類推,圖10中有10個直角三角形的內(nèi)切圓,它們的面積分別記為S1,S2,S3,…,S10,則S1+S2+S3+…+S10=( )
A. 4π B. 3π C. 2π D. π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角坐標系中,O是坐標原點,直線AB交x軸于點A(﹣4,0),交y軸于點B,拋物線y=ax2+2ax+3(a≠0)經(jīng)過A,B兩點.P是線段AO上的一動點,過點P作PC⊥x軸交直線AB于點C,交拋物線于點D.
(1)求a及AB的長.
(2)連結PB,若tan∠ABP=,求點P的坐標.
(3)連結BD,以BD為邊作正方形BDEF,是否存在點P使點E恰好落在拋物線的對稱軸上?若存在,請求出點P的坐標;若不存在,請說明理由.
(4)連結OC,若S△BDC:S△OBC=1:2,將線段BD繞點D按順時針方向旋轉,得到DB′.則在旋轉的過程中,當點A,B到直線DB′的距離和最大時,請直接寫出點B′的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,排球運動員站在點O處練習發(fā)球,將球從O點正上方2m的A處發(fā)出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y=a(x-6)2+h.已知球網(wǎng)與O點的水平距離為9m,高度為2.43m,球場的邊界距O點的水平距離為18m。
(1)當h=2.6時,求y與x的關系式(不要求寫出自變量x的取值范圍)
(2)當h=2.6時,球能否越過球網(wǎng)?球會不會出界?請說明理由;
(3)若球一定能越過球網(wǎng),又不出邊界,求h的取值范圍。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC,D是AB上一點,E是BC延長線上一點,將△ABC繞點C順時針方向旋轉,恰好能與△EDC重合.若∠A=33°,則旋轉角為_____°.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com