某地區(qū)周一至周六每天的平均氣溫為:2,-1,3,5,6,5(單位:℃),則這組數(shù)據(jù)的極差是(  )℃.
A、7B、6C、5D、0
考點(diǎn):極差
專題:
分析:先找出這組數(shù)據(jù)的最大值與最小值,再根據(jù)極差的定義即可求得.
解答:解:這組數(shù)據(jù)的最大數(shù)是6,最小數(shù)是-1,則極差是:6-(-1)=7;
故選A.
點(diǎn)評(píng):此題考查了極差,極差反映了一組數(shù)據(jù)變化范圍的大小,求極差的方法是用一組數(shù)據(jù)中的最大值減去最小值.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=8,AC:AB=4:5,延長(zhǎng)CB到D使得BD=AB,連接AD,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

請(qǐng)你在橫線上填入一個(gè)數(shù),使得方程 x2+x+
 
=0沒有實(shí)數(shù)根.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

定義:如果一元二次方程ax2+bx+c=0(a≠0)滿足a+b+c=0,那么我們稱這個(gè)方程為“和諧”方程;如果一元二次方程ax2+bx+c=0(a≠0)滿足a-b+c=0那么我們稱這個(gè)方程為“美好”方程,如果一個(gè)一元二次方程既是“和諧”方程又是“美好”方程,則下列結(jié)論正確的是( 。
A、方有兩個(gè)相等的實(shí)數(shù)根
B、方程有一根等于0
C、方程兩根之和等于0
D、方程兩根之積等于0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

一元二次方程x(x-3)=0根是( 。
A、x=3
B、x=-3
C、x1=-3,x2=0
D、x1=3,x2=0

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

拋物線y=(x-1)2+2的頂點(diǎn)坐標(biāo)是( 。
A、(1,2)
B、(-1,2)
C、( 1,-2)
D、(-1,-2)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

化簡(jiǎn):
2
5
=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

某校九年級(jí)(1)班數(shù)學(xué)興趣小組在社會(huì)實(shí)踐活動(dòng)中,進(jìn)行了如下的課題研究:用一定長(zhǎng)度的鋁合金材料,將它設(shè)計(jì)成外觀為長(zhǎng)方形的三種框架,為了使設(shè)計(jì)出的長(zhǎng)方形框架面積最大.小組討論后,同學(xué)們做了以下三種試驗(yàn):

請(qǐng)根據(jù)以上圖案回答下列問題:
(1)在圖案(1)中,如果鋁合金材料總長(zhǎng)度(圖中所有黑線的長(zhǎng)度和)為6米,當(dāng)豎檔AB長(zhǎng)為1米,求長(zhǎng)方形框架ABCD的面積;
(2)在圖案(2)中,如果鋁合金材料總長(zhǎng)度為6米,設(shè)豎檔AB為x米,求長(zhǎng)方形框架ABCD的面積S(用含x的代數(shù)式表示),并指出當(dāng)AB為多少米時(shí),長(zhǎng)方形框架ABCD的面積S最大;
(3)在圖案(3)中,如果鋁合金材料總長(zhǎng)度為a米,設(shè)豎檔AB為x米,求當(dāng)AB為多少米時(shí),長(zhǎng)方形框架ABCD的面積S最大.
(4)探索:如圖(4),如果鋁合金材料總長(zhǎng)度為a米,AD邊上共有n條豎檔時(shí),請(qǐng)直接寫出當(dāng)豎檔AB長(zhǎng)為多少米時(shí),長(zhǎng)方形框架ABCD的面積最大,最大值為多少.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,∠AOP=∠BOP=15°,PC∥OA交OB于C,PD⊥OA于D,若PC=6,則PD等于(  )
A、4B、3C、2D、1

查看答案和解析>>

同步練習(xí)冊(cè)答案