【題目】如圖,AB為半圓O的直徑,CD切⊙O于點(diǎn)E,AD、BC分別切⊙O于A、B兩點(diǎn),AD與CD相交于D,BC與CD相交于C,連接OD、OC,對于下列結(jié)論:①OD2=DECD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CDOA;⑤∠DOC=90°;⑥若切點(diǎn)E在半圓上運(yùn)動(dòng)(A、B兩點(diǎn)除外),則線段AD與BC的積為定值.其中正確的個(gè)數(shù)是(
A.5
B.4
C.3
D.2

【答案】A
【解析】解:連接OE,如圖所示: ∵AD與圓O相切,DC與圓O相切,BC與圓O相切,
∴∠DAO=∠DEO=∠OBC=90°,
∴DA=DE,CE=CB,AD∥BC,
∴CD=DE+EC=AD+BC,選項(xiàng)②正確;
∴S梯形ABCD= (AD+BC)AB=CDOA;選項(xiàng)④正確;
在Rt△ADO和Rt△EDO中,
,
∴Rt△ADO≌Rt△EDO(HL),
∴∠AOD=∠EOD,
同理Rt△CEO≌Rt△CBO,
∴∠EOC=∠BOC,
又∵∠AOD+∠DOE+∠EOC+∠COB=180°,
∴2(∠DOE+∠EOC)=180°,即∠DOC=90°,選項(xiàng)⑤正確;
∴∠DOC=∠DEO=90°,又∠EDO=∠ODC,
∴△EDO∽△ODC,
= ,即OD2=DCDE,選項(xiàng)①正確;
同理△ODE∽△OEC,
,
∴OD≠OC,選項(xiàng)③錯(cuò)誤;
∵∠COD=90°,OE⊥CD,
∴OE2=CEDE,
∵DA=DE,CE=CB,
∴ADBC=OE2
∴線段AD與BC的積為定值,故⑥正確.
故選A.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】工人師傅要將邊長為4m和3m的平行四邊形框架固定,現(xiàn)有下列長度的木棒,在木棒的兩端釘上達(dá)到固定平行四邊形的目的,不符合要求的是( 。
A.2m
B.3m
C.4m
D.8m

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線AB、CD相交于點(diǎn)O,OE⊥CD,OF平分∠BOD.
(1)圖中除直角外,請寫出一對相等的角嗎:(寫出符合的一對即可)
(2)如果∠AOE=26°,求∠BOD和∠COF的度數(shù).(所求的角均小于平角)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】函數(shù)y=x2+bx+c與y=x的圖象如圖所示,有以下結(jié)論: ①b2﹣4c>0;
②b+c+1=0;
③3b+c+6=0;
④當(dāng)1<x<3時(shí),x2+(b﹣1)x+c<0.
其中正確的個(gè)數(shù)為(

A.1個(gè)
B.2個(gè)
C.3個(gè)
D.4個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,對角線AC與BD相交于點(diǎn)O,點(diǎn)E是BC上的一個(gè)動(dòng)點(diǎn),連接DE,交AC于點(diǎn)F.

(1)如圖①,當(dāng) 時(shí),求 的值;
(2)如圖②當(dāng)DE平分∠CDB時(shí),求證:AF= OA;
(3)如圖③,當(dāng)點(diǎn)E是BC的中點(diǎn)時(shí),過點(diǎn)F作FG⊥BC于點(diǎn)G,求證:CG= BG.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2015年1月,市教育局在全市中小學(xué)中選取了63所學(xué)校從學(xué)生的思想品德、學(xué)業(yè)水平、學(xué)業(yè)負(fù)擔(dān)、身心發(fā)展和興趣特長五個(gè)維度進(jìn)行了綜合評價(jià).評價(jià)小組在選取的某中學(xué)七年級全體學(xué)生中隨機(jī)抽取了若干名學(xué)生進(jìn)行問卷調(diào)查,了解他們每天在課外用于學(xué)習(xí)的時(shí)間,并繪制成如下不完整的統(tǒng)計(jì)圖.

根據(jù)上述信息,解答下列問題:
(1)本次抽取的學(xué)生人數(shù)是;扇形統(tǒng)計(jì)圖中的圓心角α等于;補(bǔ)全統(tǒng)計(jì)直方圖;
(2)被抽取的學(xué)生還要進(jìn)行一次50米跑測試,每5人一組進(jìn)行.在隨機(jī)分組時(shí),小紅、小花兩名女生被分到同一個(gè)小組,請用列表法或畫樹狀圖求出她倆在抽道次時(shí)抽在相鄰兩道的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為半圓O的直徑,CD切⊙O于點(diǎn)E,AD、BC分別切⊙O于A、B兩點(diǎn),AD與CD相交于D,BC與CD相交于C,連接OD、OC,對于下列結(jié)論:①OD2=DECD;②AD+BC=CD;③OD=OC;④S梯形ABCD=CDOA;⑤∠DOC=90°;⑥若切點(diǎn)E在半圓上運(yùn)動(dòng)(A、B兩點(diǎn)除外),則線段AD與BC的積為定值.其中正確的個(gè)數(shù)是(
A.5
B.4
C.3
D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角∠O的內(nèi)部有一滑動(dòng)桿AB,當(dāng)端點(diǎn)A沿直線AO向下滑動(dòng)時(shí),端點(diǎn)B會(huì)隨之自動(dòng)地沿直線OB向左滑動(dòng),如果滑動(dòng)桿從圖中AB處滑動(dòng)到A′B′處,那么滑動(dòng)桿的中點(diǎn)C所經(jīng)過的路徑是(
A.直線的一部分
B.圓的一部分
C.雙曲線的一部分
D.拋物線的一部分

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,AB= ,AC= ,BC=1.
(1)求證:∠A≠30°;
(2)將△ABC繞BC所在直線旋轉(zhuǎn)一周,求所得幾何體的表面積.

查看答案和解析>>

同步練習(xí)冊答案