【題目】本學(xué)期初,我市教育部門對某中學(xué)從學(xué)生的品德、身心、學(xué)習(xí)、創(chuàng)新、國際、審美、信息、生活八個方面進(jìn)行了綜合評價,評價小組從八年級學(xué)生中選取部分學(xué)生針對“信息素養(yǎng)”進(jìn)行測試,并將測試結(jié)果繪制成如下統(tǒng)計圖(如圖).根據(jù)圖中信息,解答下列問題:
(1)本次選取參加測試的學(xué)生人數(shù)是 ___;
(2)學(xué)生“信息素養(yǎng)”得分的中位數(shù)落在 _____;
(3)若把每組中各個分?jǐn)?shù)用這組數(shù)據(jù)的中間值代替(如30﹣40分的中間值為35分),則參加測試的學(xué)
生的平均分為多少分?
【答案】(1)50人;
(2)70分~80分組;
(3)參加測試的學(xué)生的平均分為73.8分.
【解析】試題分析:(1)把圖中所有各分?jǐn)?shù)段參加測試的學(xué)生人數(shù)相加即可;(2)根據(jù)數(shù)據(jù)的個數(shù)確定中位數(shù)即可;(3)利用平均數(shù)的計算方法直接計算得出答案即可.
試題解析:(1)8+10+16+12+4=50;
(2)學(xué)生“信息素養(yǎng)”得分的中位數(shù)是70分80分組;
(3)(8×55+10×65+16×75+12×85+4×95)÷50=3690÷50=73.8(分)
答:參加測試的學(xué)生的平均分為73.8分。
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AC=4cm,BC=3cm,動點M、N從點C同時出發(fā),均以每秒1cm的速度分別沿CA、CB向終點A、B移動,同時動點P從點B出發(fā),以每秒2cm的速度沿BA向終點A移動,連接PM,PN,MN,設(shè)移動時間為t(單位:秒,0<t<2.5).
(1)當(dāng)時間為t秒時,點P到BC的距離為 cm.
(2)當(dāng)t為何值時,以A,P,M為頂點的三角形與△ABC相似?
(3)是否存在某一時刻t,使四邊形APNC的面積S有最小值?若存在,求S的最小值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC和△DEC中,AC=BC,DC=EC,∠ACB=∠ECD=90°.
(1)如圖1,當(dāng)點A、C、D在同一條直線上時,AC=12,EC=5.
①求證:AF⊥BD,
②求AF的長度;
(2)如圖2,當(dāng)點A、C、D不在同一條直線上時.求證:AF⊥BD;
(3)如圖3,在(2)的條件下,連接CF并延長CF交AD于點G,∠AFG是一個固定的值嗎?若是,求出∠AFG的度數(shù),若不是,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把式子2x(a﹣2)﹣y(2﹣a)分解因式,結(jié)果是( 。
A.(a﹣2)(2x+y)B.(2﹣a)(2x+y)
C.(a﹣2)(2x﹣y)D.(2﹣a)(2x﹣y)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某校綜合實踐活動小組的同學(xué)欲測量公園內(nèi)一棵樹DE的高度,他們在這棵樹的正前方一座樓亭前的臺階上A點處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺階下的點C處,測得樹頂端D的仰角為60°.已知A點的高度AB為3米,臺階AC的坡度為1:(即AB:BC=1:),且B、C、E三點在同一條直線上.請根據(jù)以上條件求出樹DE的高度(側(cè)傾器的高度忽略不計).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某旅游團(tuán)上午8時從旅館出發(fā),乘汽車到距離180千米的某著名旅游景點游玩,該汽車離旅館的距離S(千米)與時間t (時)的關(guān)系可以用如圖的折線表示.根據(jù)圖象提供的有關(guān)信息,解答下列問題:
(1)求該團(tuán)去景點時的平均速度是多少?
(2)該團(tuán)在旅游景點游玩了多少小時?
(3)求出返程途中S(千米)與時間t (時)的函數(shù)關(guān)系式,并求出自變量t的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com