【題目】小王家距上班地點(diǎn)18千米,他用乘公交車的方式平均每小時(shí)行駛的路程比他用自駕車的方式平均每小時(shí)行駛的路程的2倍還9千米.他從家出發(fā)到達(dá)上班地點(diǎn),乘公交車方式所用時(shí)間是自駕車方式所用時(shí)間的.小王用自駕車方式上班平均每小時(shí)行駛( 。

A. 26千米 B. 27千米 C. 28千米 D. 30千米

【答案】B

【解析】

設(shè)小王用自駕車方式上班平均每小時(shí)行駛x千米,根據(jù)已知小王家距上班地點(diǎn)18千米.他用乘公交車的方式平均每小時(shí)行駛的路程比他自用駕車的方式平均每小時(shí)行駛的路程的2倍還多9千米,他從家出發(fā)到達(dá)上班地點(diǎn),乘公交車方式所用時(shí)間是自駕車方式所用時(shí)間的,可列方程求解.

小王家距上班地點(diǎn)18千米,

小王從家到上班地點(diǎn)所需時(shí)間t=小時(shí);

他用乘公交車的方式平均每小時(shí)行駛的路程比他自用駕車的方式平均每小時(shí)行駛的路程的2倍還多9千米,

他乘公交車從家到上班地點(diǎn)所需時(shí)間t=,

∵乘公交車方式所用時(shí)間是自駕車方式所用時(shí)間的,

=×,

解得x=27,

經(jīng)檢驗(yàn)x=27是原方程的解,且符合題意.

即:小王用自駕車方式上班平均每小時(shí)行駛27千米.

故答案選:B.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,等腰ABC中,AB=AC,AB的垂直平分線MNAC于點(diǎn)D,DBC=15°,則∠A的度數(shù)是(

A. 50° B. 45° C. 55° D. 60°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在平面直角坐標(biāo)系xOy中,拋物線y=ax2+bx+c(a≠0)與x軸交于A(﹣1,0),B(3,0),與y軸交于C(0,3),頂點(diǎn)為D(1,4),對(duì)稱軸為DE.

(1)拋物線的解析式是;
(2)如圖(2),點(diǎn)P是AD上一個(gè)動(dòng)點(diǎn),P′是P關(guān)于DE的對(duì)稱點(diǎn),連接PE,過P′作P′F∥PE交x軸于F.設(shè)S四邊形EPP′F=y,EF=x,求y關(guān)于x的函數(shù)關(guān)系式,并求y的最大值;
(3)在(1)中的拋物線上是否存在點(diǎn)Q,使△BCQ成為以BC為直角邊的直角三角形?若存在,求出Q的坐標(biāo);若不存在.請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,∠AOB=45°,點(diǎn)M,N在邊OA上,OM=3,ON=7,點(diǎn)P直線OB上的點(diǎn),要使點(diǎn)P,M,N構(gòu)成等腰三角形的點(diǎn)P________個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知關(guān)于x的一元二次方程x2+(2k+1)x+k2﹣2=0的兩根為x1和x2 , 且(x1﹣2)(x1﹣x2)=0,則k的值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】對(duì)x,y定義一種新運(yùn)算T,規(guī)定T(x,y)=(其中a,b是非零常數(shù),且x+y≠0),這里等式右邊是通常的四則運(yùn)算.

如:T(3,1)=,T(m,﹣2)=

(1)填空:T(4,﹣1)=   (用含a,b的代數(shù)式表示);

(2)T(﹣2,0)=﹣2T(5,﹣1)=6.

①求ab的值;

②若T(3m﹣10,m)=T(m,3m﹣10),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠ABC=90°,AB=BC,三角形的頂點(diǎn)在相互平行的三條直線、上,且,,之間的距離為2 , ,之間的距離為3 ,則AC2= _______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】以邊長(zhǎng)為2的正方形的中心O為端點(diǎn),引兩條相互垂直的射線,分別與正方形的邊交于A、B兩點(diǎn),則線段AB的最小值是

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AD和BE是高,∠ABE=45°,點(diǎn)F是AB的中點(diǎn),AD與FE、BE分別交于點(diǎn)G、H,∠CBE=∠BAD.有下列結(jié)論:①FD=FE;②AH=2CD;③BCAD= AE2;④SABC=4SADF . 其中正確的有(
A.1個(gè)
B.2 個(gè)
C.3 個(gè)
D.4個(gè)

查看答案和解析>>

同步練習(xí)冊(cè)答案