將拋物線(xiàn)y=x2+1先向左平移2個(gè)單位,再向下平移3個(gè)單位,那么所得拋物線(xiàn)的函數(shù)關(guān)系式是(  )
A.y=(x+2)2+2B.y=(x+2)2-2
C.y=(x-2)2+2D.y=(x-2)2-2
B.

試題分析:將拋物線(xiàn)y=x2+1先向左平移2個(gè)單位所得拋物線(xiàn)的函數(shù)關(guān)系式是:y=(x+2)2+1;
將拋物線(xiàn)y=(x+2)2+1向下平移3個(gè)單位所得拋物線(xiàn)的函數(shù)關(guān)系式是:y=(x+2)2+1-3,即y=(x+2)2-2.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

高科技發(fā)展公司投資500萬(wàn)元,成功研制出一種市場(chǎng)需求量較大的高科技替代產(chǎn)品,并投入資金1500萬(wàn)元作為固定投資,已知生產(chǎn)每件產(chǎn)品的成本是40元.在銷(xiāo)售過(guò)程中發(fā)現(xiàn):當(dāng)銷(xiāo)售單價(jià)定為100元時(shí),年銷(xiāo)售量為20萬(wàn)件;銷(xiāo)售單價(jià)每增加10元,年銷(xiāo)售量將減少1萬(wàn)件,設(shè)銷(xiāo)售單價(jià)為x(元),年銷(xiāo)售量為y(萬(wàn)件),年獲利(年獲利=年銷(xiāo)售額一生產(chǎn)成本—投資)為z(萬(wàn)元).
(1)試寫(xiě)出y與x之間的函數(shù)關(guān)系式(不寫(xiě)x的取值范圍);
(2)試寫(xiě)出z與x之間的函數(shù)關(guān)系式(不寫(xiě)x的取值范圍);
(3)公司計(jì)劃,在第一年按年獲利最大確定銷(xiāo)售單價(jià)進(jìn)行銷(xiāo)售;到第二年年底獲利不低于1130萬(wàn)元,請(qǐng)借助函數(shù)的大致圖象說(shuō)明:第二年的銷(xiāo)售單價(jià)x(元)應(yīng)確定在什么范圍內(nèi)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知點(diǎn)和點(diǎn)在拋物線(xiàn)上.

(1)求的值及點(diǎn)的坐標(biāo);
(2)點(diǎn)軸上,且滿(mǎn)足△是以為直角邊的直角三角形,求點(diǎn)的坐標(biāo);
(3)平移拋物線(xiàn),記平移后點(diǎn)A的對(duì)應(yīng)點(diǎn)為,點(diǎn)B的對(duì)應(yīng)點(diǎn)為. 點(diǎn)M(2,0)在x軸上,當(dāng)拋物線(xiàn)向右平移到某個(gè)位置時(shí),最短,求此時(shí)拋物線(xiàn)的函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知二次函數(shù)y1=ax2+bx-3的圖象經(jīng)過(guò)點(diǎn)A(2,-3),B(-1,0),與y軸交于點(diǎn)C,與x軸另一交點(diǎn)交于點(diǎn)D.

(1)求二次函數(shù)的解析式;
(2)求點(diǎn)C、點(diǎn)D的坐標(biāo);
(3)若一條直線(xiàn)y2,經(jīng)過(guò)C、D兩點(diǎn),請(qǐng)直接寫(xiě)出y1>y2時(shí),的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,已知直線(xiàn)與y軸交于點(diǎn)A,拋物線(xiàn)經(jīng)過(guò)點(diǎn)A,其頂點(diǎn)為B,另一拋物線(xiàn)的頂點(diǎn)為D,兩拋物線(xiàn)相交于點(diǎn)C

(1)求點(diǎn)B的坐標(biāo),并說(shuō)明點(diǎn)D在直線(xiàn)的理由;
(2)設(shè)交點(diǎn)C的橫坐標(biāo)為m
①交點(diǎn)C的縱坐標(biāo)可以表示為:        或        ,由此請(qǐng)進(jìn)一步探究m關(guān)于h的函數(shù)關(guān)系式;
②如圖2,若,求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線(xiàn)與x軸交于點(diǎn)A(-1,0)、B(3,0),與y軸交于點(diǎn)C(0,3).

(1)求拋物線(xiàn)的解析式及頂點(diǎn)D的坐標(biāo);
(2)若點(diǎn)P是拋物線(xiàn)第一象限上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PQ∥AC交x軸于點(diǎn)Q.當(dāng)點(diǎn)P的坐標(biāo)為           時(shí),四邊形PQAC是平行四邊形;當(dāng)點(diǎn)P的坐標(biāo)為                 時(shí),四邊形PQAC是等腰梯形. (利用備用圖畫(huà)圖,直接寫(xiě)出結(jié)果,不寫(xiě)求解過(guò)程).
(3)若P為線(xiàn)段BD上的一個(gè)動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥x軸于點(diǎn)M,求四邊形PMAC的面積的最大值和此時(shí)點(diǎn)P的坐標(biāo)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

二次函數(shù)y=-2(x-5)2+3的頂點(diǎn)坐標(biāo)是     

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

拋物線(xiàn)y=x2向上平移2個(gè)單位,得到新拋物線(xiàn)的函數(shù)表達(dá)式是(   )
A.y=x2-2B.y=(x-2)2C.y=x2+2D.y=(x+2)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,用長(zhǎng)為20米的籬笆恰好圍成一個(gè)扇形花壇,且扇形花壇的圓心角小于180°,設(shè)扇形花壇的半徑為米,面積為平方米.(注:的近似值取3)

(1)求出的函數(shù)關(guān)系式,并寫(xiě)出自變量的取值范圍;
(2)當(dāng)半徑為何值時(shí),扇形花壇的面積最大,并求面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案