【題目】我們知道當(dāng)電壓一定時,電流與電阻成反比例函數(shù)關(guān)系.現(xiàn)有某學(xué)生利用一個最大電阻為的滑動變阻器及一電流表測電源電壓,結(jié)果如圖所示.

電流(安培)與電阻(歐姆)之間的函數(shù)解析式為________;

當(dāng)電阻在之間時,電流應(yīng)在________范圍內(nèi),電流隨電阻的增大而________;

若限制電流不超過安培,則電阻在________之間.

【答案】(1) (2)安培安培 減小 (3)

【解析】

(1)設(shè)出函數(shù)解析式為I=mR,將點(diǎn)A(8,18)代入求得m值,則函數(shù)解析式即可求出;(2)令2≤R≤200求得I的取值范圍即可,電流隨電阻的增減性可由反比例函數(shù)的性質(zhì)求得;(3)令I≤20求得R的取值范圍,需注意最大電阻為200Ω.

(1)設(shè)函數(shù)解析式為

將點(diǎn)A(8,18)代入,得m=144,

故函數(shù)解析式為

(2)當(dāng)時,可得

故電流應(yīng)在0.72安培72安培范圍內(nèi);電流隨電阻的增大而減;

(3)若限制電流不超過20安培,

(Ω),

∵最大電阻為200Ω的滑動變阻器,

∴電阻在7.2Ω200Ω之間。

故答案為:(1);(2)0.72安培72安培,減小;(3)7.2Ω200Ω.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:ABC在直角坐標(biāo)平面內(nèi),三個頂點(diǎn)的坐標(biāo)分別為A(0,3)、B(3,4)、C(2,2)(正方形網(wǎng)格中每個小正方形的邊長是一個單位長度).

(1)畫出ABC向下平移4個單位長度得到的A1B1C1,點(diǎn)C1的坐標(biāo)是   ;

(2)以點(diǎn)B為位似中心,在網(wǎng)格內(nèi)畫出A2B2C2,使A2B2C2ABC位似,且位似比為2:1;

(3)四邊形AA2C2C的面積是   平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在中,,,點(diǎn)在邊上,且,點(diǎn)的中點(diǎn),點(diǎn)為邊上的動點(diǎn),當(dāng)點(diǎn)上移動時,使四邊形周長最小的點(diǎn)的坐標(biāo)為( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,直線AB分別與x軸、y軸交于A、B兩點(diǎn),OC平分∠AOBAB于點(diǎn)C,點(diǎn)D為線段AB上一點(diǎn),過點(diǎn)DDEOCy軸于點(diǎn)E,已知AO=m,BO=n,且m、n滿足n212n+36+|n2m|=0

1)求A、B兩點(diǎn)的坐標(biāo);

2)若點(diǎn)DAB中點(diǎn),延長DEx軸于點(diǎn)F,在ED的延長線上取點(diǎn)G,使DG=DF,連接BG

BGy軸的位置關(guān)系怎樣?說明理由; ②求OF的長;

3)如圖2,若點(diǎn)F的坐標(biāo)為(10,10),Ey軸的正半軸上一動點(diǎn),P是直線AB上一點(diǎn),且P的橫坐標(biāo)為6,是否存在點(diǎn)E使△EFP為等腰直角三角形?若存在,求出點(diǎn)E的坐標(biāo);若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用小立方塊搭一幾何體,使得它的從正面看和從上面看形狀圖如圖所示,這樣的幾何體最少要______個立方塊,最多要_______個立方塊.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)D,E分別是ABC的邊BABC延長線上的點(diǎn),作∠DAC的平分線AF,若AFBC

1)求證:ABC是等腰三角形;

2)作∠ACE的平分線交AF于點(diǎn)G,若∠B40°,求∠AGC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn),在反比例函數(shù)圖象上,軸于點(diǎn),軸于點(diǎn)

(1),的值并寫出反比例函數(shù)的表達(dá)式;

(2)連接,是線段上一點(diǎn),過點(diǎn)軸的垂線,交反比例函數(shù)圖象于點(diǎn),若,求出點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,再平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為A(a,0),B(b,0),,點(diǎn)C的坐標(biāo)為(0,3).

1)求a,b的值;

2)求;

3)若點(diǎn)M在坐標(biāo)軸上,且=,直接寫出M的坐標(biāo);

4)點(diǎn)D的坐標(biāo)為(6,5),動點(diǎn)Px軸上,當(dāng)CDP試等腰三角形,請直接寫出所有符合條件的點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】王強(qiáng)與李明兩位同學(xué)在學(xué)習(xí)概率,做拋骰子(正方體形狀)試驗(yàn)他們共拋了54,出現(xiàn)向上點(diǎn)數(shù)的次數(shù)如下表:

向上點(diǎn)數(shù)

1

2

3

4

5

6

出現(xiàn)次數(shù)

6

9

5

8

16

10

(1)請計(jì)算出現(xiàn)向上點(diǎn)數(shù)為3的頻率及出現(xiàn)向上點(diǎn)數(shù)為5的頻率;

(2)王強(qiáng)說:根據(jù)試驗(yàn),可知一次試驗(yàn)中出現(xiàn)向上點(diǎn)數(shù)為5的概率最大.”李明說:如果拋540,那么出現(xiàn)向上點(diǎn)數(shù)為6的次數(shù)正好是100.”請判斷王強(qiáng)和李明說法的對錯

查看答案和解析>>

同步練習(xí)冊答案