【題目】如圖,在△ABC中,BC邊的垂直平分線交AC邊于點D,連接BD.
(1)如圖CE=4,△BDC的周長為18,求BD的長.
(2)求∠ADM=60°,∠ABD=20°,求∠A的度數(shù).
【答案】(1)BD=5;(2)∠A =80°.
【解析】試題分析:(1)根據(jù)MN是線段BC的垂直平分線且CE=4,則可得出BE=4,再根據(jù)△BDC的周長為18可得出BD的值;
(2)由對頂角相等可得∠CDN=∠ADM=50°,在Rt△CED中,根據(jù)三角和內(nèi)角和定理計算出∠C的度數(shù),再由∠DBC=∠C和∠ABC=∠ABD+∠DBC計算出∠ABC的度數(shù),再根據(jù)三角形內(nèi)角和定理即可計算出∠A的度數(shù).
試題解析:
(1)∵MN垂直平分BC,
∴DC=BD,
CE=EB,
又∵EC=4,
∴BE=4,
又∵△BDC的周長=18,
∴BD+DC=10,
∴BD=5;
(2)∵∠ADM=50°,
∴∠CDN=50°,
又∵MN垂直平分BC,
∴∠DNC=90°,
∴∠C=40°,
又∵∠C=∠DBC=40°,
∠ABD=20°,
∴∠ABC=60°,
∴∠A=180°-∠C-∠ABC=80°.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系中,直線l:y=x﹣1與x軸交于點A1 , 如圖所示依次作正方形A1B1C1O、正方形A2B2C2C1…、正方形AnBnCnCn﹣1 , 使得點A1、A2、A3、…在直線l上,點C1、C2、C3、…在y軸正半軸上,則點Bn的坐標是( )
A.(2n﹣1 , 2n﹣1)
B.(2n , 2n﹣1)
C.(2n﹣1 , 2n+1)
D.(2n﹣1 , 2n)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小敏從A地出發(fā)向B地行走,同時小聰從B地出發(fā)向A地行走,如圖所示,相交于點P的兩條線段、分別表示小敏、小聰離B地的距離與已用時間之間的關(guān)系,則小敏、小聰行走的速度分別是
A. 和 B. 和
C. 和 D. 和
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)A(-2,y1),B(1,y2),C(2,y3)是拋物線y=-(x+1)2+a上的三點,則y1 , y2 , y3的大小關(guān)系為( 。
A.y1>y2>y3
B.y1>y3>y2
C.y3>y2>y1
D.y3>y1>y2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】乘法公式的探究及應(yīng)用.
(1)如圖1可以求出陰影部分的面積是 (寫成兩數(shù)平方差的形式);
(2)比較圖1、圖2兩圖的陰影部分面積,可以得到
乘法公式 (用式子表達);
(3)運用你所得到的公式,計算下列各題:
①(2m+n﹣p)(2m﹣n+p) ②10.3×9.7.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=(m2+m) .
(1)當(dāng)函數(shù)是二次函數(shù)時,求m的值;
(2)當(dāng)函數(shù)是一次函數(shù)時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我省教育廳下發(fā)了《在全省中小學(xué)幼兒園廣泛深入開展節(jié)約教育》的通知,通知中要求各學(xué)校全面持續(xù)開展“光盤行動”.某市教育局督導(dǎo)檢查組為了調(diào)查學(xué)生對“節(jié)約教育”內(nèi)容的了解程度(程度分為:“A—了解很多”,“B—了解較多”,“C—了解較少”,“D—不了解”),對本市一所中學(xué)的學(xué)生進行了抽樣調(diào)查,我們將這次調(diào)查的結(jié)果繪制成以下兩幅統(tǒng)計圖.
根據(jù)以上信息,解答下列問題:
(1)本次抽樣調(diào)查了多少名學(xué)生?
(2)補全兩幅統(tǒng)計圖;
(3)若該中學(xué)共有1 800名學(xué)生,請你估計這所中學(xué)的所有學(xué)生中,對“節(jié)約教育”內(nèi)容“了解較多”的有多少名?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bx的圖象如圖,若一元二次方程ax2+bx+m=0有實數(shù)根,則m的最大值為( 。
A.-3
B.3
C.-6
D.9
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com