【題目】如圖,在矩形ABCD中,AC為對角線,過點BBFAC于點F,延長BFAD于點E,交CD的延長線于點G

1)求證:ABF∽△EGD;

2)若CD5,DG3,求tanGBC的值.

【答案】1)證明見解析;(2

【解析】

1)在矩形ABCD中,∠BAD=∠BCD=∠ADC90°ABCD,ABGC,由于∠AFB=∠ADG90°,ABGC,所以∠ABF=∠G,從而得證;

2)由于∠BCD=∠AFB90°,所以∠ACB+ACD90°,∠G+ACD90°,所以∠ACB=∠G,又因為∠ABC=∠BCG90°,從而可知ABC∽△BCG,所以BC2CGAB,求出BC2,所以tanGBC

解:(1)在矩形ABCD中,

BAD=∠BCD=∠ADC90°,

ABCD,ABGC,

BFAC

∴∠AFB=∠ADG90°,

ABGC,

∴∠ABF=∠G,

∴△ABF∽△EGD

2)∵∠BCD=∠AFB90°,

∴∠ACB+ACD90°,∠G+ACD90°,

∴∠ACB=∠G

∵∠ABC=∠BCG90°

∴△ABC∽△BCG,

,

BC2CGAB,

CGCD+DG8,ABCD5,

BC2

tanGBC

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】2016年3月國際風箏節(jié)期間,王大伯決定銷售一批風箏,經(jīng)市場調研:蝙蝠型風箏進價每個為10元,當售價每個為12元時,銷售量為180個,若售價每提高1元,銷售量就會減少10個,請回答以下問題:

(1)用表達式表示蝙蝠型風箏銷售量y(個)與售價x(元)之間的函數(shù)關系(12≤x≤30);

(2)王大伯為了讓利給顧客,并同時獲得840元利潤,售價應定為多少?

(3)當售價定為多少時,王大伯獲得利潤W最大,最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,兩車分別從路段AB兩端同時出發(fā),沿平行路線AC、BD行駛,CEDF的長分別表示兩車到道路AB的距離.

1)求證:ACE∽△BDF

2)如果兩車行駛速度相同,求證:ACE≌△BDF

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,平行四邊形ABCD中,EAD的中點,已知△DEF的面積為S,則四邊形ABCE的面積為( 。

A. 8S B. 9S C. 10S D. 11S

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,菱形OBCD的邊OBx軸正半軸上,反比例函數(shù)y=x0)的圖象經(jīng)過該菱形對角線的交點A,且與邊BC交于點F.若點D的坐標為(6,8),則點F的坐標是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,鐵路MN和公路PQ在點O處交匯,∠QON30°,在點A處有一棟居民樓,AO320m,如果火車行駛時,周圍200m以內會受到噪音的影響,那么火車在鐵路MN上沿ON方向行駛時.

1)居民樓是否會受到噪音的影響?請說明理由;

2)如果行駛的速度為72km/h,居民樓受噪音影響的時間為多少秒?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖是一片等邊三角形形狀的草地,為方便人們休閑,現(xiàn)決定在草地內部修建一座小亭,小亭離三個出口即三角形三個頂點A、B、C的距離相等.

1)用尺規(guī)作圖的方法確定小亭的位置.

2)若草地的邊長50m,求小亭到出口的距離.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=﹣x2+bx+cx軸交于A1,0),B﹣3,0)兩點.

1)求該拋物線的解析式;

2)設(1)中的拋物線交y軸與C點,在該拋物線的對稱軸上是否存在點Q,使得△QAC的周長最?若存在,求出Q點的坐標;若不存在,請說明理由;

3)在(1)中的拋物線上的第二象限上是否存在一點P,使△PBC的面積最大?若存在,求出點P的坐標及△PBC的面積最大值;若沒有,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y=x2+bx+cx軸交于A-10),B3,0)兩點.

1)求該拋物線的解析式;

2)求該拋物線的對稱軸以及頂點坐標;

3)設(1)中的拋物線上有一個動點P,當點P在該拋物線上滑動到什么位置時,滿足SPAB=8,并求出此時P點的坐標.

查看答案和解析>>

同步練習冊答案