【題目】如圖,在平面直角坐標系中,菱形OBCD的邊OB在x軸正半軸上,反比例函數(shù)y=(x>0)的圖象經(jīng)過該菱形對角線的交點A,且與邊BC交于點F.若點D的坐標為(6,8),則點F的坐標是 .
【答案】(12,).
【解析】
首先過點D作DM⊥x軸于點M,過點F作FE⊥x于點E,由點D的坐標為(6,8),可求得菱形OBCD的邊長,又由點A是BD的中點,求得點A的坐標,利用待定系數(shù)法即可求得反比例函數(shù)y=(x>0)的解析式,然后由tan∠FBE=tan∠DOM=,可設EF=4a,BE=3a,則點F的坐標為:(10+3a,4a),即可得方程4a(10+3a)=32,繼而求得a的值,則可求得答案.
試題過點D作DM⊥x軸于點M,過點F作FE⊥x于點E,
∵點D的坐標為(6,8),
∴OD==10,
∵四邊形OBCD是菱形,
∴OB=OD=10,
∴點B的坐標為:(10,0),
∵AB=AD,即A是BD的中點,
∴點A的坐標為:(8,4),
∵點A在反比例函數(shù)y=上,
∴k=xy=8×4=32,
∵OD∥BC,
∴∠DOM=∠FBE,
∴tan∠FBE=tan∠DOM=,
設EF=4a,BE=3a,
則點F的坐標為:(10+3a,4a),
∵點F在反比例函數(shù)y=上,
∴4a(10+3a)=32,
即3a2+10a﹣8=0,
解得:a1=,a2=﹣4(舍去),
∴點F的坐標為:(12,).
故答案為(12,).
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC中,AB=8,AC=5,BC=7,點D在AB上一動點,線段CD繞點C逆時針旋轉60°得到線段CE,AE的最小值為________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】中國青少年發(fā)展基金會為某地“希望小學”捐贈物資,其中文具和食品共320件,文具比食品多80件.
(1)求文具和食品各多少件;
(2)現(xiàn)計劃租用甲、乙兩種貨車共8輛,一次性將這批文具和食品全部運往該地.已知甲種貨車最多可裝文具40件和食品10件,乙種貨車最多可裝文具和食品各20件.則中國青少年發(fā)展基金會安排甲、乙兩種貨車時有幾種方案?請你幫助設計出來.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校數(shù)學興趣小組的同學測量一架無人飛機P的高度,如圖,A,B兩個觀測點相距,在A處測得P在北偏東71°方向上,同時在B處測得P在北偏東35°方向上.求無人飛機P離地面的高度.(結果精確到1米,參考數(shù)據(jù):,,sin71°≈0.95,tan71°≈2.90)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為做好防汛工作,防汛指揮部決定對某水庫的水壩進行加高加固,專家提供的方案是:水壩加高2米(即CD=2米),背水坡DE的坡度i=1:1(即DB:EB=1:1),如圖所示,已知AE=4米,∠EAC=130°,求水壩原來的高度BC.(參考數(shù)據(jù):sin50°≈0.77,cos50°≈0.64,tan50°≈1.2)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在矩形ABCD中,AC為對角線,過點B作BF⊥AC于點F,延長BF交AD于點E,交CD的延長線于點G.
(1)求證:△ABF∽△EGD;
(2)若CD=5,DG=3,求tan∠GBC的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某經(jīng)銷商銷售一種產(chǎn)品,這種產(chǎn)品的成本價為10元/千克,已知銷售價不低于成本價,且物價部門規(guī)定這種產(chǎn)品的銷售價不高于18元/千克,市場調查發(fā)現(xiàn),該產(chǎn)品每天的銷售量y(千克)與銷售價x(元/千克)之間的函數(shù)關系如圖所示:
(1)求y與x之間的函數(shù)關系式,并寫出自變量x的取值范圍;
(2)求每天的銷售利潤W(元)與銷售價x(元/千克)之間的函數(shù)關系式.當銷售價為多少時,每天的銷售利潤最大?最大利潤是多少?
(3)該經(jīng)銷商想要每天獲得150元的銷售利潤,銷售價應定為多少?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】定義[a,b,c]為函數(shù)y=ax2+bx+c的特征數(shù),下面給出特征數(shù)為[2m,1﹣m,﹣1﹣m]的函數(shù)的一些結論,其中不正確的是( 。
A. 當m=﹣3時,函數(shù)圖象的頂點坐標是(,)
B. 當m>0時,函數(shù)圖象截x軸所得的線段長度大于
C. 當m≠0時,函數(shù)圖象經(jīng)過同一個點
D. 當m<0時,函數(shù)在x>時,y隨x的增大而減小
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是二次函數(shù)y=ax2+bx+c圖象的一部分,圖象過點A(-3,0),對稱軸為直線x=-1,給出四個結論:①b2>4ac;②2a+b=0;③a+b+c>0;④若點B(-,y1),C(-,y2)為函數(shù)圖象上的兩點,則y1<y2.其中正確結論是___________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com