【題目】某商店將進(jìn)貨價為每件元的商品以每件元的銷售價售出,平均每月能售出件.市場調(diào)查發(fā)現(xiàn),當(dāng)每件商品售價每上漲元時,其銷售量將減少件.若設(shè)每件商品的銷售價元.
(1)試用含的代數(shù)式填空:
①漲價后,每件商品的利潤為 元;
②漲價后,商店該商品平均每月的銷售量為 件;(填化簡后的結(jié)果)
③漲價后,商店平均每月銷售利潤為 元;
(2)如果這家商店要想平均每月銷售利潤達(dá)到元,甲同學(xué)說:在原售價每件元的基礎(chǔ)上再上漲元,可以完成任務(wù).乙同學(xué)說:不用漲那么多,在原售價每件元的基礎(chǔ)上再上漲元就可以了.請你根據(jù)計算說明甲同學(xué)與乙同學(xué)的說法是否正確.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知反比例函數(shù)y=(x>0)與正比例函數(shù)y=x(x≥0)的圖象,點A(1,5)、點A′(5,b)與點B′均在反比例函數(shù)的圖象上,點B在直線y=x上,四邊形AA′B′B是平行四邊形,則B點的坐標(biāo)為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】()探究發(fā)現(xiàn)
下面是一道例題及其解答過程,請補充完整:
如圖①在等邊內(nèi)部,有一點,若,求證: ,
證明:將繞點逆時針旋轉(zhuǎn),得到,連接,則為等邊三角形.
∴, , __________.
∵,∴,
∴__________,
即,
()類比延伸:
如圖②在等腰三角形中, ,內(nèi)部有一點,若,試判斷線段、、之間的數(shù)量關(guān)系,并證明.
()聯(lián)想拓展:
如圖③在中, , ,點在直線上方,且,滿足,請直接寫出的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小華和小明用兩張相同的長方形紙做數(shù)學(xué)實驗,先在兩條較長的邊上各取一點畫一條線,沿畫線剪開后再對齊,并將其中一部分沿長邊平移一定的距離, 陰影表示平移拉開的區(qū)域.小華畫了一條線段,如圖①所示;小明畫了一條曲線,如圖②所示.
(1)設(shè)長方形的長為,寬為,平移的距離為,請計算兩個陰影區(qū)域的面積,由計算結(jié)果你發(fā)現(xiàn)了什么?
(2)任意畫一條與長邊平行的直線,被陰影部分所截得的線段是否相等?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知,兩點,且、滿足,點是射線上的動點(不與,重合),將線段平移到,使點與點對應(yīng),點與點對應(yīng),連接,.
(1)求出點和點的坐標(biāo);
(2)設(shè)三角形面積為,若,求的取值范圍;
(3)設(shè),,,請給出,,滿足的數(shù)量關(guān)系式,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機(jī)小李某天的運營全是在東西走向的人民大街進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天下午的行車?yán)锍倘缦拢▎挝唬?/span>km)
+10、-3、-8、+11、-10、+12、+4、-15、-16、+15
(1)將最后一名乘客送到目的地時,小李距下午出車地點的距離是多少?
(2)若汽車的耗油量為0.5L/㎞,那么這天下午汽車共耗油多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,平行四邊形OABC的邊OA在x軸的正半軸上,A、C兩點的坐標(biāo)分別為(2,0)、(1,2),點B在第一象限,將直線y=-2x沿y軸向上平移m(m>0)個單位.若平移后的直線與邊BC有交點,則m的取值范圍是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如下圖,將一張正方形紙片,剪成四個大小形狀一樣的小正方形,然后將其中的一個小正方形再按同樣的方法剪成四個小正方形,再將其中的一個小正方形剪成四個小正方形,如此循環(huán)下去.
(1)填寫下表:
剪的次數(shù) | 1 | 2 | 3 | 4 | 5 |
正方形個數(shù) | 4 | 7 | 10 |
|
|
(2)如果剪了8次,共剪出 個小正方形.
(3)如果剪n次,共剪出 個小正方形.
(4)設(shè)最初正方形紙片為1,則剪n次后,最小正方形的邊長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1的解析表達(dá)式為y=-3x+3,且l1與x軸交于點D,直線l2經(jīng)過點A,B,直線l1,l2,交于點C.
(1)求點D的坐標(biāo);
(2)求直線l2的解析表達(dá)式;
(3)求△ADC的面積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com