39、(1)如圖①所示,AB∥DE,∠BAC=130°,∠ACD=80°,試求∠CDE的度數(shù).

(2)通過(guò)上題的解決,你能否用多種方法解決下面的問(wèn)題,試試看.
如圖②所示,已知AB∥DE,試說(shuō)明∠B+∠D=∠BCD.
分析:(1)此類(lèi)題只需巧妙構(gòu)造輔助線:作已知直線AB的平行線CF,然后運(yùn)用平行線的性質(zhì)即可證明;
(2)構(gòu)造輔助線(如圖①②③所示),然后利用兩直線平行內(nèi)錯(cuò)角相等即可證明題目結(jié)論.
解答:解:(1)過(guò)C作CF∥AB.
∵AB∥DE,CF∥AB,
∴CF∥DE.
∵AB∥CF,
∴∠BAC+∠1=180°.
又∵∠BAC=130°,
∴∠1=50°.
又∵∠ACD=80°,
∴∠2=∠ACD-∠1=80°-50°=30°.
∵CF∥DE,
∴∠CDE=∠2=30°;

(2)方法提示:
方法1:過(guò)C作CF∥DE(如圖①所示),
∵AB∥DE,
∴AB∥DE∥CF,
∴∠B=∠BCF,∠D=∠DCF,
∴∠B+∠D=∠BCD.
方法2:延長(zhǎng)BC交DE于點(diǎn)F,過(guò)F點(diǎn)作FG∥CD(如圖②).
方法3:過(guò)D點(diǎn)作DF∥BC交BA的反向延長(zhǎng)線于F(如圖③).這兩種方法證明過(guò)程和方法1差不多.

點(diǎn)評(píng):特別注意此類(lèi)題中常見(jiàn)的輔助線:構(gòu)造已知直線的平行線,然后熟練根據(jù)平行線的性質(zhì)探討要求的角和已知角之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

24、(1)如圖,在圖1中,互不重疊的三角形共有3個(gè),在圖2中,互不重疊的三角形共有5個(gè),在圖3中,互不重疊的三角形共有7個(gè),…,則在第n個(gè)圖形中,互不重疊的三角形共有
2n+1
個(gè).(用含n的代數(shù)式表示)

(2)若在如圖4所示的n邊形中,P是A1An邊上的點(diǎn),分別連接PA2、PA3、PA4…PAn-1,得到n-1個(gè)互不重疊的三角形.

你能否根據(jù)這樣的劃分方法寫(xiě)出n邊形的內(nèi)角和公式并說(shuō)明你的理由;
(3)反之,若在四邊形內(nèi)部有n個(gè)不同的點(diǎn),按照(1)中的方法可得k個(gè)互不重疊的三角形,試探究n與k的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

14、根據(jù)如圖2所示的(1),(2),(3)三個(gè)圖所表示的規(guī)律,依次下去第n個(gè)圖中平行四邊形的個(gè)數(shù)是
3n(n+1)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1所示,在正方形ABCD中,AB=1,
AC
是以點(diǎn)B為圓心,AB長(zhǎng)為半徑的圓的一段弧,點(diǎn)E是邊AD上的任意一點(diǎn)(點(diǎn)E與點(diǎn)A、D不重合),過(guò)E作AC所在圓的切線,交邊DC于點(diǎn)F,G為切點(diǎn).
(1)當(dāng)∠DEF=45°時(shí),求證:點(diǎn)G為線段EF的中點(diǎn);
(2)設(shè)AE=x,F(xiàn)C=y,求y關(guān)于x的函數(shù)解析式,并寫(xiě)出函數(shù)的定義域;
(3)圖2所示,將△DEF沿直線EF翻折后得△D1EF,當(dāng)EF=
5
6
時(shí),討論△精英家教網(wǎng)AD1D與△ED1F是否相似,如果相似,請(qǐng)加以證明;如果不相似,只要求寫(xiě)出結(jié)論,不要求寫(xiě)出理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,△ABC和△ADE是等腰直角三角形,∠BAC=∠DAE=90°
(1)如圖2,若點(diǎn)C、A、D在同一條直線上,且點(diǎn)E在AB上,連接CE、BD,試判斷CE與BD有什么樣的關(guān)系,并說(shuō)明理由.
(2)將△ADE繞點(diǎn)A旋轉(zhuǎn)到如圖3所示的位置,同樣連接CE、BD,(1)中的結(jié)論還成立嗎?并說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

小強(qiáng)和小勇利用課本上學(xué)過(guò)的知識(shí)來(lái)進(jìn)行臺(tái)球比賽.
(1)小強(qiáng)把白球放在如圖1所示的位置,想通過(guò)擊打白球撞擊黑球,使黑球撞擊AC邊后反彈進(jìn)F洞.想一想,小強(qiáng)這樣擊打,黑球能進(jìn)F洞嗎?請(qǐng)用畫(huà)圖的方法驗(yàn)證你的判斷,并說(shuō)明理由.
(2)小勇想通過(guò)擊打白球撞擊黑球,使黑球至多撞擊臺(tái)球桌邊一次后進(jìn)A洞,請(qǐng)你替小勇設(shè)計(jì)兩種方案,并分別在如圖2、圖3所示的臺(tái)球桌上畫(huà)出示意圖,解釋你的理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案