11.如圖,以Rt△ABC的AC邊為直徑作⊙O交斜邊AB于點E,連接EO并延長交BC的延長線于點D,點F為BC的中點,連接EF.
(1)判斷EF與⊙O的位置關系并說明理由;
(2)若⊙O的半徑為2,∠EAC=60°,求AD的長.

分析 (1)連接FO,由F為BC的中點,AO=CO,得到OF∥AB,由于AC是⊙O的直徑,得出CE⊥AE,根據(jù)OF∥AB,得出OF⊥CE,于是得到OF所在直線垂直平分CE,推出FC=FE,OE=OC,再由∠ACB=90°,即可得到結(jié)論.
(2)證出△AOE是等邊三角形,得到∠EOA=60°,再由直角三角形的性質(zhì)即可得到結(jié)果.

解答 證明:(1)如圖1,連接FO,
∵F為BC的中點,AO=CO,
∴OF∥AB,
∵AC是⊙O的直徑,
∴CE⊥AE,
∵OF∥AB,
∴OF⊥CE,
∴OF所在直線垂直平分CE,
∴FC=FE,OE=OC,
∴∠FEC=∠FCE,∠0EC=∠0CE,
∵∠ACB=90°,
即:∠0CE+∠FCE=90°,
∴∠0EC+∠FEC=90°,
即:∠FEO=90°,
∴FE為⊙O的切線;

(2)如圖2,∵⊙O的半徑為2,
∴AO=CO=EO=3,
∵∠EAC=60°,OA=OE,
∴∠EOA=60°,
∴∠COD=∠EOA=60°,
∵在Rt△OCD中,∠COD=60°,OC=3,
∴CD=2$\sqrt{3}$,
∵在Rt△ACD中,∠ACD=90°,
CD=2$\sqrt{3}$,AC=4,
∴AD=2$\sqrt{7}$.

點評 本題考查了切線的判定和性質(zhì),三角形的中位線的性質(zhì),勾股定理,線段垂直平分線的性質(zhì),直角三角形的性質(zhì),熟練掌握定理是解題的關鍵.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:選擇題

1.如圖,直線AB⊥CD于點O,EF為過點O的一條直線,則∠1與∠2的關系一定成立的是( 。
A.互為余角B.互為補角C.互為對頂角D.互為鄰補角

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

2.計算:-22+$\sqrt{9}$+$\root{3}{64}$-|-3|+(-1)2016

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

19.已知AB是⊙O的直徑,點P是直徑AB上任意一點,過點P作弦CD⊥AB,垂足為點P,過B點的直線與線段AB的延長線交于點F,且∠F=∠ABC.

(1)如圖1,求證:直線BF是⊙O的切線;
(2)如圖2,當點P與點O重合時,過點A作⊙O的切線交線段BC的延長線于點E,在其它條件不變的情況下,判斷四邊形AEBF是什么特殊的四邊形?證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:選擇題

6.已知AD為△ABC的外接圓⊙O的直徑,點E是△ABC的內(nèi)心,AE的延長線交BC于點F,交⊙O于點D,BC=6,cos∠BAC=$\frac{4}{5}$,則EF的長是(  )
A.1B.4-$\sqrt{10}$C.5-$\sqrt{10}$D.$\sqrt{10}$-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

16.計算:-(-9)+(-2)3+|2-$\sqrt{5}$|+2sin30°.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

3.已知二次函數(shù)y=x2與一次函數(shù)y=2x+3的圖象交于A,B兩點,求出△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

20.2016年5月,我縣某中學舉行了“校園好聲音”演唱比賽活動,根據(jù)學生的成績劃分為A、B、C、D四個等級,并繪制了不完整的兩種統(tǒng)計圖.

根據(jù)圖中提供的信息,回答下列問題:
(1)求參加演唱比賽的學生共有多少人,并把條形圖補充完整;
(2)求出扇形統(tǒng)計圖中,m與n的值;
(3)求出C等級對應扇形的圓心角的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

1.先化簡再求值:$(x+1-\frac{3}{x-1})•$$\frac{x-1}{x-2}$,其中x=2+$\sqrt{2}$.

查看答案和解析>>

同步練習冊答案