【題目】如圖,下列說(shuō)法錯(cuò)誤的是( ).
①∠1和∠3是同位角;②∠1和∠5是同位角;③∠1和∠2是同旁內(nèi)角;④∠1和∠4是內(nèi)錯(cuò)角.
A. ①② B. ②③ C. ②④ D. ③④
【答案】C
【解析】
根據(jù)同位角:兩條直線被第三條直線所截形成的角中,若兩個(gè)角都在兩直線的同側(cè),并且在第三條直線(截線)的同旁,則這樣一對(duì)角叫做同位角.
內(nèi)錯(cuò)角:兩條直線被第三條直線所截形成的角中,若兩個(gè)角都在兩直線的之間,并且在第三條直線(截線)的兩旁,則這樣一對(duì)角叫做內(nèi)錯(cuò)角.
同旁內(nèi)角:兩條直線被第三條直線所截形成的角中,若兩個(gè)角都在兩直線的之間,并且在第三條直線(截線)的同旁,則這樣一對(duì)角叫做同旁內(nèi)角,分別進(jìn)行分析可得答案.
①∠1與∠3是同位角,原題說(shuō)法正確;
②∠1與∠5不是同位角,故原題說(shuō)法錯(cuò)誤;
③∠1與∠2是同旁內(nèi)角,原題說(shuō)法正確;
④∠1與∠4不是內(nèi)錯(cuò)角,原題說(shuō)法錯(cuò)誤;
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,平行四邊形紙片ABCD中,AD=5,S甲行四邊形紙片ABCD=15,過(guò)點(diǎn)A作AE⊥BC,垂足為E,沿AE剪下△ABE,將它平移至△DCE′的位置,拼成四邊形AEE′D,則四邊形AEE′D的形狀為
A.平行四邊形
B.菱形
C.矩形
D.正方形
(2)如圖2,在(1)中的四邊形紙片AEE′D中,在EE′上取一點(diǎn)F,使EF=4,剪下△AEF,剪下△AEF,將它平移至△DE′F′的位置,拼成四邊形AFF′D.
求證:四邊形AFF′D是菱形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,⊙M與x軸相切于點(diǎn)A(8,0),與y軸分別交于點(diǎn)B(0,4)和點(diǎn)C(0,16),則圓心M到坐標(biāo)原點(diǎn)O的距離是( )
A.10
B.8
C.4
D.2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD中,AB⊥AC,AB=2,AC=4.對(duì)角線AC,BD相交于點(diǎn)O,將直線AC繞點(diǎn)O順時(shí)針旋轉(zhuǎn)α°,分別交直線BC、AD于點(diǎn)E、F.
(1)當(dāng)α= °,四邊形ABEF是平行四邊形;
(2)在旋轉(zhuǎn)的過(guò)程中,從A、B、C、D、E、F中任意4個(gè)點(diǎn)為頂點(diǎn)構(gòu)造四邊形.
①α= °,構(gòu)造的四邊形是菱形;
②若構(gòu)造的四邊形是矩形,求出該矩形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD的對(duì)角線AC,BD相交于點(diǎn)O,將BD向兩個(gè)方向延長(zhǎng),分別至點(diǎn)E和點(diǎn)F,且使BE=DF.
(1)求證:四邊形AECF是菱形;
(2)若AC=4,BE=1,直接寫(xiě)出菱形AECF的邊長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,當(dāng)直線BC、DC被直線AB所截時(shí),∠1的同位角是_______,同旁內(nèi)角是_______;當(dāng)直線AB、AC被直線BC所截時(shí),∠1的同位角是________;當(dāng)直線AB、BC被直線CD所截時(shí),∠2的內(nèi)錯(cuò)角是________
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】請(qǐng)閱讀下列材料,并完成相應(yīng)的任務(wù)。
阿基米德(Archimedes,公元前287~公元前212年,古希臘)是有史以來(lái)最偉大的數(shù)學(xué)家之一.
阿基米德折弦定理:如圖1,AB和BC是圓O的兩條弦(即折線ABC是圓的一條折弦), BC>AB,M是 的中點(diǎn),即CD=AB+BD。下面是運(yùn)用“截長(zhǎng)法”證明CD=AB+BD的部分過(guò)程。
證明:如圖2,在CB上截取CG=AB,連接MA、MB、MC、MG。因?yàn)镸是弧ABC的中點(diǎn),所以MA=MC.
任務(wù):
(1)請(qǐng)按照上面的證明思路,完整證明阿基米德折弦定理,即CD=AB+BD。
(2)如圖3,已知等邊△ABC內(nèi)接于圓O,AB=1,D為 上一點(diǎn),∠ABD=45°,AE⊥BD于點(diǎn)E,則△BDC的周長(zhǎng)是.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一慢車和一快車沿相同路線從A地到B地,所行駛的路程與時(shí)間的函數(shù)圖象如圖所示,試根據(jù)圖象回答下列問(wèn)題:
(1)由圖象你可以得到哪些信息?
(2)求慢車、快車的速度.
(3)求A,B兩地之間的距離.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=﹣ x2﹣ x+2與x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C
(1)求點(diǎn)A,B,C的坐標(biāo);
(2)點(diǎn)E是此拋物線上的點(diǎn),點(diǎn)F是其對(duì)稱軸上的點(diǎn),求以A,B,E,F(xiàn)為頂點(diǎn)的平行四邊形的面積;
(3)此拋物線的對(duì)稱軸上是否存在點(diǎn)M,使得△ACM是等腰三角形?若存在,請(qǐng)求出點(diǎn)M的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com