【題目】如圖,拋物線與軸交于點A(-1,0),頂點坐標為(1,n),與y軸的交點在(0,2),(0,3)之間(包含端點),則下列結論:①當時, ;②;③;④中,正確的是_______.
【答案】①③
【解析】①∵拋物線y=ax2+bx+c與x軸交于點A(-1,0),對稱軸直線是x=1,
∴該拋物線與x軸的另一個交點的坐標是(3,0),
∴根據圖示知,當x>3時,y<0,故①正確;
②根據圖示知,拋物線開口方向向下,則a<0.
∵對稱軸x=- =1,∴b=-2a,∴3a+b=3a-2a=a<0,即3a+b<0,故②錯誤;
③∵拋物線與x軸的兩個交點坐標分別是(-1,0),(3,0),
∴-1×3=-3,
∴ =-3,則a=- ,
∵拋物線與y軸的交點在(0,2)、(0,3)之間(包含端點),
∴2≤c≤3,∴-1≤-≤- ,即-1≤a≤-,故③正確;
④根據題意知,a=-,-=1,∴b=-2a=,∴n=a+b+c=,
∵2≤c≤3,∴≤≤4,即≤n≤4,故④錯誤;
綜上所述,正確的說法有①③,
故答案為:①③.
科目:初中數學 來源: 題型:
【題目】如圖,在邊長均為l的小正方形網格紙中,△ABC的頂點,A、B、C均在格點上,O為直角坐標系的原點,點A(-1,0)在x軸上.
(1)以O為位似中心,將△ABC放大,使得放大后的△A1B1C1與△ABC的相似比為2:1,要求所畫△A1B1C1與△ABC在原點兩側;
(2)分別寫出B1、C1的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖1 ,在矩形紙片中, ,折疊紙片使點落在邊上的處,折痕為,過點作交于,連接
求證:四邊形為菱形;
當點在邊上移動時,折痕的端點也隨之移動,若限定分別在邊.上移動,求出點在邊上移動的最大距離.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知二次函數y=x2-2mx+m2-1.
(1)當二次函數的圖象經過坐標原點O(0,0)時,求二次函數的解析式;
(2)如圖,當m=2時,該拋物線與y軸交于點C,頂點為D,求C、D兩點的坐標;
(3)在(2)的條件下,x軸上是否存在一點P,使得PC+PD最短?若P點存在,求出P點的坐標;若P點不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)問題發(fā)現(xiàn).
如圖1,和均為等邊三角形,點、、均在同一直線上,連接.
①求證:.
②求的度數.
③線段、之間的數量關系為__________.
(2)拓展探究.
如圖2,和均為等腰直角三角形,,點、、在同一直線上,為中邊上的高,連接.
①請判斷的度數為____________.
②線段、、之間的數量關系為________.(直接寫出結論,不需證明)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】當路況良好時,在干燥的路面上,汽車的剎車距離s與車速v之間的關系如下表所示:
v/(km/h) | 40 | 60 | 80 | 100 | 120 |
s/m | 2 | 4.2 | 7.2 | 11 | 15.6 |
(1)在平面直角坐標系中描出每對(v,s)所對應的點,并用光滑的曲線順次連接各點。
(2)利用圖象驗證剎車距離s(m)與車速v(km/h)是否有如下關系: 。
(3)求當s=9m時的車速v。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】我們知道:任意一個有理數與無理數的和為無理數,任意一個不為零的有理數與一個無理數的積為無理數,而零與無理數的積為零.由此可得:如果ax+b=0,其中a、b為有理數,x為無理數,那么a=0且b=0.
運用上述知識,解決下列問題:
(1)如果(a-2)+b+3=0,其中a、b為有理數,那么a= ,b= ;
(2)如果(2+)a-(1-)b=5,其中a、b為有理數,求a+2b的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,A,B兩地被池塘隔開,小明通過下列方法測出了A,B間的距離:先在AB外選一點C,然后測出AC,BC的中點M,N,并測量出MN的長為12 m,由此他就知道了A,B間的距離,有關他這次探究活動的描述錯誤的是( )
A. AB=24 m B. MN∥AB C. △CMN∽△CAB D. CM∶MA=1∶2
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com