【題目】在一個不透明的盒子中裝有4張卡片,4張卡片的正面分別標有數(shù)字12、3、4,這些卡片除數(shù)字外都相同,將卡片攪勻.

1)從盒子任意抽取一張卡片,恰好抽到標有奇數(shù)卡片的概率是 ;

2)先從盒子中任意抽取一張卡片,再從余下的3張卡片中任意抽取一張卡片,求抽取的2張卡片標有數(shù)字之和大于5的概率(請用畫樹狀圖或列表等方法求解).

【答案】1;(2

【解析】

1)用標有奇數(shù)卡片的張數(shù)除以卡片的總張數(shù)即得結果;

2)利用樹狀圖畫出所有出現(xiàn)的結果數(shù),再找出2張卡片標有數(shù)字之和大于5的結果數(shù),然后利用概率公式計算即可.

解:(1)標有奇數(shù)卡片的是1、3兩張,所以恰好抽到標有奇數(shù)卡片的概率=.

故答案為:;

2)畫樹狀圖如下:

由圖可知共有12種等可能的結果,其中抽取的2張卡片標有數(shù)字之和大于5的結果數(shù)有4種,

所以抽取的2張卡片標有數(shù)字之和大于5的概率=.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,矩形OABC的頂點A的坐標為(4,0),O為坐標原點,點B在第一象限,連接AC, tan∠ACO=2,DBC的中點,

1)求點D的坐標;

2)如圖2,M是線段OC上的點,OM=OC,點P是線段OM上的一個動點,經過P、D、B三點的拋物線交 軸的正半軸于點E,連接DEAB于點F.

△DBF沿DE所在的直線翻折,若點B恰好落在AC上,求此時點P的坐標;

以線段DF為邊,在DF所在直線的右上方作等邊△DFG,當動點P從點O運動到點M時,點G也隨之運動,請直接寫出點G運動的路徑的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某學校為了美化校園環(huán)境,向園林公司購買一批樹苗.公司規(guī)定:若購買樹苗不超過60棵,則每棵樹售價120元;若購買樹苗超過60棵,則每增加1棵,每棵樹售價均降低0.5元,且每棵樹苗的售價降到100元后,不管購買多少棵樹苗,每棵售價均為100.

1)若該學校購買50棵樹苗,求這所學校需向園林公司支付的樹苗款;

2)若該學校向園林公司支付樹苗款8800元,求這所學校購買了多少棵樹苗.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c經過△ABC的三個頂點,其中點A(0,1,點B(﹣9,10,AC∥x軸,點P時直線AC下方拋物線上的動點.

(1求拋物線的解析式;(2過點P且與y軸平行的直線l與直線AB、AC分別交于點E、F,當四邊形AECP的面積最大時,求點P的坐標;

(3當點P為拋物線的頂點時,在直線AC上是否存在點Q,使得以C、P、Q為頂點的三角形與△ABC相似,若存在,求出點Q的坐標,若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于二次函數(shù),下列說法不正確的是(

A.其圖象的對稱軸為過且平行于軸的直線.

B.其最小值為1.

C.其圖象與軸沒有交點.

D.時,的增大而增大.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,點D、E分別在邊AB、AC上,則在下列五個條件中:①∠AED=∠B;②DEBC;③;④AD·BCDE·AC;⑤∠ADE=∠C,能滿足ADEACB的條件有( )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A1,4),B4,2),C35)(每個方格的邊長均為1個單位長度).

1)請畫出將△ABC向下平移5個單位后得到的△A1B1C1;

2)將△ABC繞點O逆時針旋轉90°,畫出旋轉后得到的△A2B2C2,并直接寫出點B旋轉到點B2所經過的路徑長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】溫州某企業(yè)安排名工人生產甲、乙兩種產品,每人每天生產件甲或件乙,甲產品每件可獲利.根據市場需求和生產經驗,乙產品每天產量不少于件,當每天生產件時,每件可獲利元, 每增加件,當天平均每件利潤減少.設每天安排人生產乙產品.

根據信息填表:

產品種類

每天工人數(shù)()

每天產量()

每件產品可獲利潤()

__________

_____________

_____________

若每天生產甲產品可獲得的利潤比生產乙產品可獲得的利潤多元,求每件乙產品可獲得的利潤.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】RtABC中,∠BCA90°,∠A<∠ABC,DAC邊上一點,且DADB,OAB的中點,CEBCD的中線.

1)如圖①,連接OC,證明∠OCE=∠OAC;

2)如圖②,點M是射線EC上的一個動點,將射線OM繞點O逆時針旋轉得射線ON,使∠MON=∠ADBON與射線CA交于點N

①猜想并證明線段OM和線段ON之間的數(shù)量關系;

②若∠BAC30°,BCm,當∠AON15°時,請直接寫出線段ME的長度(用含m的式子表示).

查看答案和解析>>

同步練習冊答案