【題目】已知點(diǎn)C為線段AB上一點(diǎn),分別以AC、BC為邊在線段AB的同側(cè)作△ACD和△BCE,且CA=CD,CB=CE,∠ACD=∠BCE,直線AE與BD交于點(diǎn)F.
(1)如圖1,若∠ACD=60°,則∠AFB=______,如圖2,若∠ACD=90°,則∠AFB=______,如圖3,若∠ACD=α,則∠AFB=______(用含α的式子表示);
(2)設(shè)∠ACD=α,將圖3中的△ACD繞點(diǎn)C順時(shí)針旋轉(zhuǎn)任意角度(交點(diǎn)F至少在BD、AE中的一條線段上),如圖4,試探究∠AFB與α的數(shù)量關(guān)系,并予以說(shuō)明.
【答案】(1)120°,90°,180°-α;(2)∠AFB=180°-α,理由見解析
【解析】
(1)如圖1,先根據(jù)SAS證明△BCD≌△ECA,從而得到∠EAC=∠BDC,再根據(jù)三角形外角性質(zhì)求出其度數(shù).如圖2,先根據(jù)HL證明△ACE≌△DCB,從而得到∠AEC=∠DBC,進(jìn)而得出∠AFB的度數(shù).如圖3,由∠ACD=∠BCE得到∠ACE=∠DCB,再由三角形的內(nèi)角和定理得∠CAE=∠CDB,從而得出∠DFA=∠ACD,從而求得∠AFB;
(2)由∠ACD=∠BCE得到∠ACE=∠DCB,再根據(jù)SAS證明△ACE≌△DCB,從而得到∠CBD=∠CEA,再根據(jù)三角形內(nèi)角和定理得到結(jié)論.
(1)如圖1,CA=CD,∠ACD=60°,
∴△ACD是等邊三角形.
∵CB=CE,∠ACD=∠BCE=60°,
∴△ECB是等邊三角形.
∵AC=DC,∠ACE=∠ACD+∠DCE,∠BCD=∠BCE+∠DCE,
又∵∠ACD=∠BCE,
∴∠ACE=∠BCD.
∵AC=DC,CE=BC,
∴△ACE≌△DCB(SAS).
∴∠EAC=∠BDC.
又∵∠AFB是△ADF的外角.
∴∠AFB=∠ADF+∠FAD=∠ADC+∠CDB+∠FAD=∠ADC+∠EAC+∠FAD=∠ADC+∠DAC=120°.
如圖2,∵AC=CD,∠ACE=∠DCB=90°,EC=CB,
∴△ACE≌△DCB(HL).
∴∠AEC=∠DBC,
又∵∠FDE=∠CDB,∠DCB=90°,
∴∠EFD=90°.
∴∠AFB=90°.
如圖3,∵∠ACD=∠BCE,
∴∠ACD+∠DCE=∠BCE+∠DCE.
∴∠ACE=∠DCB.
∴∠CAE=∠CDB.
∴∠DFA=∠ACD.
∴∠AFB=180°-∠DFA=180°-∠ACD=180°-α.
(2)∠AFB=180°-α;理由如下:
證明:∵∠ACD=∠BCE=α,
∴∠ACD+∠DCE=∠BCE+∠DCE,即∠ACE=∠DCB.
在△ACE和△DCB中,
∵ ,
∴△ACE≌△DCB(SAS).
∴∠CBD=∠CEA,
∴∠EFB=∠ECB=α.
∴∠AFB=180°-∠EFB=180°-α.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在平行四邊形ABCD中,BC=2AB,CE⊥AB于E,F(xiàn)為AD的中點(diǎn),若∠AEF=54,則∠B=( )
A. 54 B. 60 C. 72 D. 66
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,四邊形ABCD中AB∥CD,對(duì)角線AC,BD相交于O,點(diǎn)E,F(xiàn)分別為BD上兩點(diǎn),且BE=DF,∠AEF=∠CFB.
(1)求證:四邊形ABCD是平行四邊形;
(2)若AC=2OE,試判斷四邊形AECF的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知O為坐標(biāo)原點(diǎn),四邊形OABC為長(zhǎng)方形,A(10,0),C(0,4),點(diǎn)D是OA的中點(diǎn),點(diǎn)P在BC上運(yùn)動(dòng).
(1)當(dāng)△ODP是等腰三角形時(shí),請(qǐng)直接寫出點(diǎn)P的坐標(biāo);
(2)求△ODP周長(zhǎng)的最小值.(要有適當(dāng)?shù)膱D形和說(shuō)明過(guò)程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,以四邊形ABCD的邊AB、AD為邊分別向外側(cè)作等邊三角形ABF和ADE,連接BE、DF.
(1)當(dāng)四邊形ABCD為正方形時(shí)(如圖1),則線段BE與DF的數(shù)量關(guān)系是 .
(2)當(dāng)四邊形ABCD為平行四邊形時(shí)(如圖2),問(wèn)(1)中的結(jié)論是否還成立?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在圓 O 中有折線 ABCO,BC=6,CO=4,∠B=∠C=60°,則弦 AB 的長(zhǎng)為__________________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD的邊長(zhǎng)AB=3cm,BC=6cm.某一時(shí)刻,動(dòng)點(diǎn)M從A點(diǎn)出發(fā)沿AB方向以1cm/s的速度向B點(diǎn)勻速運(yùn)動(dòng);同時(shí),動(dòng)點(diǎn)N從D點(diǎn)出發(fā)沿DA方向以2cm/s的速度向A點(diǎn)勻速運(yùn)動(dòng),問(wèn):
(1)經(jīng)過(guò)多少時(shí)間,△AMN的面積等于矩形ABCD面積的九分之一?
(2)是否存在時(shí)刻t,使以A,M,N為頂點(diǎn)的三角形與△ACD相似?若存在,求t的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖1,對(duì)折矩形紙片ABCD,使AD與BC重合,得到折痕EF,把紙片展開;再一次折疊紙片,使點(diǎn)A落在EF上,并使折痕經(jīng)過(guò)點(diǎn)B,得到折痕BM,同時(shí)得到線段BN,MN.請(qǐng)你觀察圖1,猜想∠MBN的度數(shù)是多少,并證明你的結(jié)論;
(2)將圖1中的三角形紙片BMN剪下,如圖2,折疊該紙片,猜測(cè)MN與BM的數(shù)量關(guān)系,無(wú)需證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊△ABC的頂點(diǎn)A,B分別在函數(shù)y=-圖象的兩個(gè)分支上,且AB經(jīng)過(guò)原點(diǎn)O.當(dāng)點(diǎn)A在函數(shù)y=-的圖象上移動(dòng)時(shí),頂點(diǎn)C始終在函數(shù)y=的圖象上移動(dòng),則k的值為( )
A. 8B. 6C. D. 2
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com