【題目】某工程隊承包了某段全長1800米的過江隧道施工任務,甲、乙兩個班組分別從東、西兩端同時掘進,已知甲組比乙組平均每天多掘進2米,經(jīng)過5天施工,兩組共掘進了60米,為加快工程進度,通過改進施工技術,在剩余的工程中,甲組平均每天能比原來多掘進2米,乙組平均每天能比原來多掘進1米,按此施工進度,能夠比原來少用______天完成任務.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在正方形ABCD中,AB=4cm,動點E從點A出發(fā),以1cm/秒的速度沿折線AB—BC的路徑運動,到點C停止運動.過點E作 EF∥BD,EF與邊AD(或邊CD)交于點F,EF的長度y(cm)與點E的運動時間x(秒)的函數(shù)圖象大致是
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲車從A地駛往B地,同時乙車從B地駛往A地,兩車相向而行,勻速行駛,甲車距B地的距離y(km)與行駛時間x(h)之間的函數(shù)關系如圖所示,乙車的速度是60km/h.
(1)求甲車的速度;
(2)當甲乙兩車相遇后,乙車速度變?yōu)閍(km/h),并保持勻速行駛,甲車速度保持不變,結果乙車比甲車晚38分鐘到達終點,求a的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等邊△ABC的邊長為2cm,點P從點A出發(fā),以1cm/s的速度沿AC向點C運動,到達點C停止;同時點Q從點A出發(fā),以2cm/s的速度沿AB﹣BC向點C運動,到達點C停止,設△APQ的面積為y(cm2),運動時間為x(s),則下列最能反映y與x之間函數(shù)關系的圖象是( 。
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某校為進一步推進“一校一球隊、一級一專項、一人一技能”的體育活動,決定對學生感興趣的球類項目(A:足球,B:籃球,C:排球,D:羽毛球,E:乒乓球)進行問卷調查,學生可根據(jù)自己的喜好選修一門,李老師對某班全班同學的選課情況進行統(tǒng)計后,制成了兩幅不完整的統(tǒng)計圖(如圖).
(1)該班對足球和排球感興趣的人數(shù)分別是 、 ;
(2)若該校共有學生3500名,請估計有多少人選修足球?
(3)該班班委5人中,1人選修籃球,3人選修足球,1人選修排球,李老師要從這5人中任選2人了解他們對體育選修課的看法,請你用列表或畫樹狀圖的方法,求選出的2人恰好1人選修籃球,1人選修足球的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個公共點M(1,0),且a<b.
(1)求b與a的關系式和拋物線的頂點D坐標(用a的代數(shù)式表示);
(2)直線與拋物線的另外一個交點記為N,求△DMN的面積與a的關系式;
(3)a=﹣1時,直線y=﹣2x與拋物線在第二象限交于點G,點G、H關于原點對稱,現(xiàn)將線段GH沿y軸向上平移t個單位(t>0),若線段GH與拋物線有兩個不同的公共點,試求t的取值范圍.
【答案】(1)b=﹣2a,頂點D的坐標為(﹣,﹣);(2);(3) 2≤t<.
【解析】試題分析:(1)把M點坐標代入拋物線解析式可得到b與a的關系,可用a表示出拋物線解析式,化為頂點式可求得其頂點D的坐標;
(2)把點代入直線解析式可先求得m的值,聯(lián)立直線與拋物線解析式,消去y,可得到關于x的一元二次方程,可求得另一交點N的坐標,根據(jù)a<b,判斷a<0,確定D、M、N的位置,畫圖1,根據(jù)面積和可得的面積即可;
(3)先根據(jù)a的值確定拋物線的解析式,畫出圖2,先聯(lián)立方程組可求得當GH與拋物線只有一個公共點時,t的值,再確定當線段一個端點在拋物線上時,t的值,可得:線段GH與拋物線有兩個不同的公共點時t的取值范圍.
試題解析:(1)∵拋物線有一個公共點M(1,0),
∴a+a+b=0,即b=2a,
∴拋物線頂點D的坐標為
(2)∵直線y=2x+m經(jīng)過點M(1,0),
∴0=2×1+m,解得m=2,
∴y=2x2,
則
得
∴(x1)(ax+2a2)=0,
解得x=1或
∴N點坐標為
∵a<b,即a<2a,
∴a<0,
如圖1,設拋物線對稱軸交直線于點E,
∵拋物線對稱軸為
設△DMN的面積為S,
(3)當a=1時,
拋物線的解析式為:
有
解得:
∴G(1,2),
∵點G、H關于原點對稱,
∴H(1,2),
設直線GH平移后的解析式為:y=2x+t,
x2x+2=2x+t,
x2x2+t=0,
△=14(t2)=0,
當點H平移后落在拋物線上時,坐標為(1,0),
把(1,0)代入y=2x+t,
t=2,
∴當線段GH與拋物線有兩個不同的公共點,t的取值范圍是
【題型】解答題
【結束】
24
【題目】在△ABC中,AB=AC,點D是直線BC上的一點(不與B,C重合),以AD為一邊在AD的右側作△ADE,使AD=AE,∠DAE=∠BAC,連接CE,設∠BAC=α,∠BCE=β.
(1)如圖①,當點D在線段BC上,如果α=60°,β=120°;
如圖②,當點D在線段BC上,如果α=90°,β=90°
如圖③,當點D在線段BC上,如果α,β之間有什么樣的關系?請直接寫出.
(2)如圖④,當點D在射線BC上,(1)中結論是否成立?請說明理由.
(3)如圖⑤,當點D在射線CB上,且在線段BC外,(1)中結論是否成立?若不成立,請直接寫出你認為正確的結論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,將邊長為3的正三角形ABC放置在直線l上(AB與直線l重合),將正三角形ABC沿直線l向右做無滑動的滾動,正三角形ABC的任意一邊與直線l重合時記錄滾動次數(shù),例如,正三角形ABC由圖中位置①滾動到位置②時記錄為滾動一次,當正三角形ABC由圖中位置①開始滾動2018次時,點A經(jīng)過的路徑總長度為( 。
A.2690πB.2692πC.4034πD.4036π
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,直線EF與MN相交于點O,∠MOE=30°,將一直角三角尺的直角頂點與點O重合,直角邊OA與MN重合,OB在∠NOE內部.操作:將三角尺繞點O以每秒5°的速度沿順時針方向旋轉一周,設運動時間為t(s).
(1)當t為何值時,直角邊OB恰好平分∠NOE?此時OA是否平分∠MOE?請說明理由;
(2)若在三角尺轉動的同時,直線EF也繞點O以每秒8°的速度順時針方向旋轉一周,當一方先完成旋轉一周時,另一方同時停止轉動.
①當t為何值時,OE平分∠AOB?
②OE能否平分∠NOB?若能請直接寫出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A(-2,1),B(-1,4),C(-3,3).
(1)畫出△ABC繞點B逆時針旋轉90°得到的△A1BC1.
(2)以原點O為位似中心,位似比為2:1,在y軸的左側,畫出將△ABC放大后的△A2B2C2,并寫出A2點的坐標_________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com