【題目】(閱讀)例題:在等腰三角形中,若,求的度數(shù).

點(diǎn)點(diǎn)同學(xué)在思考時(shí)是這樣分析的:都可能是頂角或底角,因此需要進(jìn)行分類.他認(rèn)為畫(huà)樹(shù)狀圖可以幫我們不重復(fù),不遺漏地分類(如圖),據(jù)此可求出的度數(shù).

(解答)

由以上思路,可得的度數(shù)為__________;

(應(yīng)用)

將一個(gè)邊長(zhǎng)為5,12,13的直角三角形拼上一個(gè)三角形后可以拼成一個(gè)等腰三角形,圖2就是其中的一種拼法.請(qǐng)你利用備用圖畫(huà)出三種可能的情形,使得拼成的等腰三角形腰長(zhǎng)為13.

(注意:請(qǐng)對(duì)所拼成圖形中的線段長(zhǎng)度標(biāo)注數(shù)據(jù))

【答案】[解答];[應(yīng)用]見(jiàn)解析.

【解析】

[解答]根據(jù)點(diǎn)點(diǎn)同學(xué)所畫(huà)的樹(shù)狀圖分情況討論計(jì)算即可;

[應(yīng)用]拼的三角形與邊長(zhǎng)為5的直角邊重合和邊長(zhǎng)為12的直角邊重合兩種情況去拼,每種情況都有兩種拼法.

: [解答]當(dāng)∠A為頂角時(shí),∠B為底角等于,

當(dāng)∠A為底角時(shí),∠B若也為底角則∠B=A=80°,∠B為頂角,則,

故∠B;

[應(yīng)用]如下圖任選其三即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已如,在平面直角坐標(biāo)系中,點(diǎn)的坐標(biāo)為、點(diǎn)的坐標(biāo)為,點(diǎn)軸上,作直線.點(diǎn)關(guān)于直線的對(duì)稱點(diǎn)剛好在軸上,連接.

1)寫(xiě)出一點(diǎn)的坐標(biāo),并求出直線對(duì)應(yīng)的函數(shù)表達(dá)式;

2)點(diǎn)在線段上,連接、,當(dāng)是等腰直角三角形時(shí),求點(diǎn)坐標(biāo);

3)如圖②,在(2)的條件下,點(diǎn)從點(diǎn)出發(fā)以每秒2個(gè)單位長(zhǎng)度的速度向原點(diǎn)運(yùn)動(dòng),到達(dá)點(diǎn)時(shí)停止運(yùn)動(dòng),連接,過(guò)的垂線,交軸于點(diǎn),問(wèn)點(diǎn)運(yùn)動(dòng)幾秒時(shí)是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】o的半徑是13,弦ABCD,AB=24,CD=10,則AB與CD的距離是( )

A.7 B.17 C.7或17 D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣1,5),點(diǎn)B的坐標(biāo)為(﹣3,1).

1)在平面直角坐標(biāo)系中作線段AB關(guān)于y軸對(duì)稱的線段A1B1AA1,BB1對(duì)應(yīng));

2)求AA1B1的面積;

3)在y軸上存在一點(diǎn)P,使PA+PB的值最小,則點(diǎn)P的坐標(biāo)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知AB是O的直徑,點(diǎn)P為圓上一點(diǎn),點(diǎn)C為AB延長(zhǎng)線上一點(diǎn),PA=PC,C=30°.

(1)求證:CP是O的切線.

(2)若O的直徑為8,求陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】操作與證明:如圖1,把一個(gè)含45°角的直角三角板ECF和一個(gè)正方形ABCD擺放在一起,使三角板的直角頂點(diǎn)和正方形的頂點(diǎn)C重合,點(diǎn)E、F分別在正方形的邊CB、CD上,連接AF.取AF中點(diǎn)M,EF的中點(diǎn)N,連接MD、MN.

(1)連接AE,求證:AEF是等腰三角形;

猜想與發(fā)現(xiàn):

(2)在(1)的條件下,請(qǐng)判斷MD、MN的數(shù)量關(guān)系和位置關(guān)系,得出結(jié)論.

結(jié)論1:DM、MN的數(shù)量關(guān)系是 ;

結(jié)論2:DM、MN的位置關(guān)系是 ;

拓展與探究:

(3)如圖2,將圖1中的直角三角板ECF繞點(diǎn)C順時(shí)針旋轉(zhuǎn)180°,其他條件不變,則(2)中的兩個(gè)結(jié)論還成立嗎?若成立,請(qǐng)加以證明;若不成立,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知BC5AB1,ABBC,射線CMBC,動(dòng)點(diǎn)P在線段BC上(不與點(diǎn)B,C重合),過(guò)點(diǎn)PDPAP交射線CM于點(diǎn)D,連接AD

1)如圖1,若BP4,判斷ADP的形狀,并加以證明.

2)如圖2,若BP1,作點(diǎn)C關(guān)于直線DP的對(duì)稱點(diǎn)C,連接AC

依題意補(bǔ)全圖2;

請(qǐng)直接寫(xiě)出線段AC的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】新定義:如圖(1)和圖(2)中,點(diǎn)P是平面內(nèi)一點(diǎn),如果2,稱點(diǎn)P是線段AB的強(qiáng)弱點(diǎn).

1)如圖2,在RtAPB中,∠APB90°,∠A30°,問(wèn):點(diǎn)B是否是線段AP的強(qiáng)弱點(diǎn)?請(qǐng)說(shuō)明理由;

2)如圖3,在RtABC中,∠ACB90°,B是線段AC的強(qiáng)弱點(diǎn)(BABC),BDRtABC的角平分線,求證:點(diǎn)D是線段AC上的強(qiáng)弱點(diǎn).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知:在直角梯形ABCD中,ADBC,C=90°,AB=AD=25,BC=32,連接BD,AEBD,垂足為E.

(1)求證:ABE∽△DBC;

(2)求線段AE的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案